http://novasinergia.unach.edu.ec 107
Referencias
Abdeen, Z., & Mohammad, S. G. (2014). Study of the
Adsorption Efficiency of an Eco-Friendly
Carbohydrate Polymer for Contaminated Aqueous
Solution by Organophosphorus Pesticide. Open
Journal of Organic Polymer Materials, 4(January),
16–28.
Aid, A., Andrei, R. D., Amokrane, S., Cammarano, C.,
Nibou, D., & Hulea, V. (2017). Ni-exchanged
cationic clays as novel heterogeneous catalysts for
selective ethylene oligomerization. Applied Clay
Science, 146(June), 432–438.
https://doi.org/10.1016/j.clay.2017.06.034
Ali, L., Alhassani, H., Karuvantevida, N., Rauf, M., &
Ashraf, S. (2014). fficient Aerobic Degradation of
Various Azo Dyes by a Sphingomonas sp Isolated
from Petroleum Sludge. Journal of Bioremediation &
Biodegradation, 05(03).
https://doi.org/10.4172/2155-6199.1000223.
Araújo, C. S., Almeida, I. L., Rezende, H. C., Marcionilio,
S. M., Léon, J. J., & de Matos, T. N. (2018).
Elucidation of mechanism involved in adsorption of
Pb (II) onto lobeira fruit (Solanum lycocarpum) using
Langmuir, Freundlich and Temkin isotherms.
Microchemical Journal, 137, 348-354.
Baban, A., Yediler, A., & Ciliz, N. K. (2010). Integrated
water management and CP implementation for wool
and textile blend processes. Clean Soil, Air, Water,
38(1), 84-90.
Bergaya, F., & Lagaly, G. (2013). Clays, Clays Minerals,
and Clay Science. Handbook of clay science. In
Handbook of Clay Science. Second Edición.
Elsiver.84-114p.
Budnyak, T. M., Vlasova, N. N., Golovkova, L. P., Slabon,
A., & Tertykh, V. A. (2019). Bile acids adsorption by
chitoan-fumed silica enterosorbent. Colloid and
Interface Science Communications, 32, 100194.
Calvete, T., Lima, E. C., Cardoso, N. F., Dias, S. L. P., &
Pavan, F. A. (2009). Application of carbon adsorbents
prepared from the Brazilian pine-fruit-shell for the
removal of Procion Red MX 3B from aqueous
solution-Kinetic, equilibrium, and thermodynamic
studies. Chemical Engineering Journal, 155(3), 627–
636. https://doi.org/10.1016/j.cej.2009.08.019
Carretero, I., & Pozo, M. (2007). Mineralogía aplicada:
Salud y medio ambiente. Madrid, Thompson. pp. 406.
Figueroa, I. (2012). Diagnóstico de las estadísticas del agua
en ecuador. CEPAL - Ecuador. Recuperado de:
https://docplayer.es/5177693-Diagnostico-de-las-
estadisticas-del-agua-en-ecuador-informe-final.html
Dada, A., Olalekan, A., Olantunya, A., & Dada, O. (2012).
Langmuir, Freundlich, Temkin and Dubinin–
Radushkevich Isotherms Studies of Equilibrium
Sorption of Zn
2+
Unto Phosphoric Acid Modified
Rice Husk. IOSR. Journal of Applied Chemistry, 3(1),
38–45. https://doi.org/10.9790/5736-0313845.
Elmoubarki, R., Mahjoubi, F. Z., Tounsadi, H., Moustadraf,
J., Abdennouri, M., Zouhri, A., & Barka, N. (2015).
Adsorption of textile dyes on raw and decanted
Moroccan clays: Kinetics, equilibrium and
thermodynamics. Water Resources and Industry, 9,
16–29. https://doi.org/10.1016/j.wri.2014.11.001
Fassbender, H. W., & Bornemisza, E. (1987). Química de
Suelos con enfasis en suelos de América Latina.
Colección de Libros y Materiales Educativos N° 81.
IICA.
Halbus, A. F., Athab, Z. H., & Hussein, F. H. (2013).
Adsorption of disperse blue dye on Iraqi date palm
seeds activated carbon. International Journal of
Chemical Sciences, 11(3), 1219-1233.
Ho, Y., & Mckay, G. (1999). Pseudo-second order model for
sorption processes. Process biochemistry, 34, 451–
465.
Kroumov, D. (2014) Determination of the mass transfer-
limiting step of dye adsorption onto commercial
adsorbent by using mathematical models.
Environmental Technology, 3
https://doi.org/10.1016/S0032-9592(98)00112-5
Mahmoodi, N. M., Salehi, R., & Arami, M. (2011). Binary
system dye removal from colored textile wastewater
using activated carbon: Kinetic and isotherm studies.
Desalination, 272(1–3), 187–195.
https://doi.org/10.1016/j.desal.2011.01.023
Pleşa, R., Tănase, A., Bedelean, H., & Măicăneanu, A.
(2016). Characterization of Romanian bentonitic clays
for the removal of dyes from wastewater. Analytical
Letters, 49(16), 2686-2701.
Rahman, A., Urabe, T., & Kishimoto, N. (2013). Color
removal of reactive procion dyes by clay adsorbents.
Procedia Environmental Sciences, 17, 270–278.
https://doi.org/10.1016/j.proenv.2013.02.038
Saini, J., Garg, V. K., & Gupta, R. K. (2018). Removal of
Methylene Blue from aqueous solution by
Fe
3
O
4
@Ag/SiO
2
nanospheres: Synthesis,
characterization and adsorption performance. Journal
of Molecular Liquids, 250, 413–422.
https://doi.org/10.1016/j.molliq.2017.11.180
Weber, T. W., & Chakravorti, R. K. (1974). Pore and Solid
Diffusion Models for Fixed-Bed Adsorbers. AIChe
Journal, 20(2), 228–238.
https://doi.org/10.1002/aic.690200204
Weber, W. J., & Morris, J. C. (1963). kinetics of adsorption
on carbon from solution. Journal of the Sanitary
Engineering Division, 89(2), 31–60.
Zhao, Y., Yang, S., Ding, D., Chen, J., Yang, Y., Lei, Z., ...
& Zhang, Z. (2013). Effective adsorption of Cr (VI)
from aqueous solution using natural Akadama clay.
Journal of Colloid and Interface Science, 395, 198-
204