http://novasinergia.unach.edu.ec 91
neutron powder diffraction. In Journal of Alloys and
Compounds (Vol. 287, Issues 1–2, pp. L4–L6).
Elsevier Sequoia SA. https://doi.org/10.1016/S0925-
8388(99)00028-6
Burstow, C. (2002). Magnesium: The impact of projected
new supply on prices over the next five years.
Transactions of the Institutions of Mining and
Metallurgy, Section C: Mineral Processing and
Extractive Metallurgy, 111(MAY/AUG).
https://doi.org/10.1179/mpm.2002.111.2.62
Cabezas, M. (2014). Hydrogen energy vector:
demonstration pilot plant with minimal. International
Journal of Hydrogen Energy, 39, 18165–18172.
Centro Nacional de Hidrógeno. (2020). Hidrógeno.
https://www.cnh2.es/el-hidrogeno/
Cid, I. (2014). Hidrógeno: Vector Energético en el Siglo
XXI. https://core.ac.uk/download/pdf/289970908.pdf
Contreras, L. (2017). UBIRA ETheses - Mechanical
synthesis of magnesium alloys for hydrogen storage.
(PhD Thesis).
https://etheses.bham.ac.uk/id/eprint/8302/
Crivello, J., Denys, R., Dornheim, M., Felderhoff, M.,
Grant, D., Huot, J., Jensen, T., de Jongh, P., Latroche,
M., Walker, G., Webb, C., & Yartys, V. (2016). Mg-
based compounds for hydrogen and energy storage.
Applied Physics A: Materials Science and
Processing, 122(2), 1–17.
https://doi.org/10.1007/s00339-016-9601-1
de Rango, P., Marty, P., & Fruchart, D. (2016). Hydrogen
storage systems based on magnesium hydride: from
laboratory tests to fuel cell integration. Applied
Physics A: Materials Science and Processing, 122(2),
1–20. https://doi.org/10.1007/s00339-016-9646-1
DIFFRAC.SUITE EVA (Version 4.0) [XRD Software ].
(2014). | Bruker. Retrieved October 18, 2020, from
https://www.bruker.com/products/x-ray-diffraction-
and-elemental-analysis/x-ray-diffraction/xrd-
software/eva.html
DIFFRAC.SUITE TOPAS (Version 4.0) [XRD Software].
(2014).| Bruker. Retrieved October 18, 2020, from
https://www.bruker.com/products/x-ray-diffraction-
and-elemental-analysis/x-ray-diffraction/xrd-
software/topas.html
Dornheim, M., Doppiu, S., Barkhordarian, G., Boesenberg,
U., Klassen, T., Gutfleisch, O., & Bormann, R.
(2007). Hydrogen storage in magnesium-based
hydrides and hydride composites. Scripta Materialia,
56(10), 841–846.
https://doi.org/10.1016/j.scriptamat.2007.01.003
El Kharbachi, A., Dematteis, E., Shinzato, K., Stevenson, S.,
Bannenberg, L., Heere, M., Zlotea, C., Szilágyi, P.,
Bonnet, J., Grochala, W., Gregory, D., Ichikawa, T.,
Baricco, M., & Hauback, B. (2020). Metal Hydrides
and Related Materials. Energy Carriers for Novel
Hydrogen and Electrochemical Storage. Journal of
Physical Chemistry C, 124(14), 7599–7607.
https://doi.org/10.1021/acs.jpcc.0c01806
Fernández-Bolaño, C. (2005). Energética del hidrógeno:.
Contexto, Estado Actual y Perspectivas de Futuro.
Universidad de Sevilla. Proyecto de Fin de Carrera.
http://bibing.us.es/proyectos/abreproy/3823/fichero/
0+Portada+e+%C3%8Dndices.pdf
Gonzáles Delgado, A. (2018). Technological comparison of
different hydrogen storage methods. Universidad
Politécnica de Valencia. Tesis de pregrado.
https://riunet.upv.es/bitstream/handle/10251/144039/
González - Comparación tecnológica entre los
diferentes métodos de almacenamiento de
hidrógeno.pdf?sequence=2&isAllowed=y
García-Conde, A. G. (2010). Producción, almacenamiento y
distribución de hidrógeno. Recuperado de:
http://www2.udg.edu/Portals/88/proc_industrials/5%
20-%20Otros%20Combustibles-Hidrogeno.pdf
Höhne, G., Hemminger, W., & Flammersheim, H. (2003).
Differential Scanning Calorimetry. Springer Berlin
Heidelberg. https://doi.org/10.1007/978-3-662-
06710-9
ICSD (Version 2015.1) [Inorganic Chemical Database
Service]. (2017) Retrieved October 18, 2020, from
http://icsd.cds.rsc.org/search/basic.xhtml;jsessionid=
82761CD648F766CC9CA76BDA84933E21?cdsrdr
=3
Jain, I., Lal, C., & Jain, A. (2010). Hydrogen storage in Mg:
A most promising material. International Journal of
Hydrogen Energy, 35(10), 5133–5144.
https://doi.org/10.1016/j.ijhydene.2009.08.088
Jiménez Sáez, F. (2020). Evaluación técnica y económica
del uso de hidrógeno verde en aplicaciones para la
indL.ustria y desplazamiento de combustible fósil.
Universidad de Chile.
http://repositorio.uchile.cl/handle/2250/175586
Kühne, K., Sanchez, L., Roth, J., & Tornel, C. (2019). Más
allá de los combustibles fósiles: Transición fiscal en
México. https://www.iisd.org/gsi
MacLaughlin, C. (2019). Status and Outlook for Magnesium
Battery Technologies: A Conversation with Stan
Whittingham and Sarbajit Banerjee. In ACS Energy
Letters (Vol. 4, Issue 2, pp. 572–575). American
Chemical Society.
https://doi.org/10.1021/acsenergylett.9b00214
Sánchez, D., Linares, J., & Inzunza, K. (2020). Energías
limpias: Una necesidad infravalorada . Recuperado
de: https://issuu.com/danielasari/docs/maninfo_final
TA Instruments. (Version 2.1) [Análisis
termogravimétrico]. (2012). Análisis
termogravimétrico – TA Instruments. Recuperado de:
https://www.tainstruments.com/productos/thermal-
analysis/thermogravimetric-analysis/?lang=es
Tuerxun, F. (2015). A novel rechargeable battery with a
magnesium anode, a titanium dioxide cathode, and a
magnesium borohydride/tetraglyme electrolyte.
http://ir.nsfc.gov.cn/paperDownload/100001354632
0.pdf
Varin, R. Czujko, T., & Wronski, Z. (2006). Particle size,