Novasinergia 2021, 4(1), 164-180 177
Kim, J. M., & Patel, R. (2020). Review on proton exchange membranes for microbial fuel cell
application. Membrane Journal, 30(4), 213-227.
https://doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.4.213
Kiran, R., & Patil, S. A. (2019). Microbial electroactive biofilms. . In N. Krishnaraj & R. k. Sani (Eds.),
Introduction to Biofilm Engineering (pp. 159-186). https://doi.org/10.1021/bk-2019-1323.ch008
Kitafa, B. A., & Al-saned, A. J. O. (2021). A Review on Microbial Fuel Cells. Engineering and
Technology Journal, 39(1A), 1-8. https://doi.org/10.30684/etj.v39i1A.1518
Kondaveeti, S., Kim, I. W., Otari, S., Patel, S. K., Pagolu, R., Losetty, V., ... & Lee, J. K. (2019). Co-
generation of hydrogen and electricity from biodiesel process effluents. International Journal
of Hydrogen Energy, 44(50), 27285-27296. https://doi.org/10.1016/j.ijhydene.2019.08.258
Kracke, F., Vassilev, I., & Krömer, J. O., (2015). Microbial electron transport and energy
conservation—the foundation for optimizing bioelectrochemical systems. Frontiers in
Microbiology, 6, 575. https://doi.org/10.3389/fmicb.2015.00575
Kumar, G. G., Hashmi, S., Karthikeyan, C., GhavamiNejad, A., Vatankhah‐Varnoosfaderani, M., &
Stadler, F. J. (2014). Graphene oxide/carbon nanotube composite hydrogels—versatile
materials for microbial fuel cell applications. Macromolecular Rapid Communications, 35(21),
1861-1865. https://doi.org/10.1002/marc.201400332
Kumar, R., Singh, L., & Zularisam, A. W. (2017). Microbial fuel cells: Types and applications. In L.
Singh & V. Kalia (Eds.), Waste Biomass Management–A Holistic Approach (pp. 367-384).
Springer, Cham. https://doi.org/10.1007/978-3-319-49595-8_16
Kumar, R., Yadav, S., & Patil, S. A. (2020). Bioanode-assisted removal of Hg
2+
at the cathode of
microbial fuel cells. Journal of Hazardous, Toxic, and Radioactive Waste, 24(4), 04020034.
https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000533
Lee, Y. Y., Kim, T. G., & Cho, K. S. (2015). Effects of proton exchange membrane on the performance
and microbial community composition of air-cathode microbial fuel cells. Journal of
Biotechnology, 211, 130-137. https://doi.org/10.1016/j.jbiotec.2015.07.018
Li, B., Zhou, J., Zhou, X., Wang, X., Li, B., Santoro, C., ... & Schuler, A. J. (2014). Surface modification
of microbial fuel cells anodes: Approaches to practical design. Electrochimica Acta, 134, 116-
126. https://doi.org/10.1016/j.electacta.2014.04.136
Li, M., Zhou, S., Xu, Y., Liu, Z., Ma, F., Zhi, L., & Zhou, X., (2018a). Simultaneous Cr(VI) reduction
and bioelectricity generation in a dual chamber microbial fuel cell. Chemical Engineering
Journal, 334, 1621–1629. https://doi.org/10.1016/j.cej.2017.11.144
Li, X., Liu, G., Sun, S., Ma, F., Zhou, S., Lee, J. K., & Yao, H. (2018b). Power generation in dual
chamber microbial fuel cells using dynamic membranes as separators. Energy Conversion and
Management, 165, 488-494. https://doi.org/10.1016/j.enconman.2018.03.074
Liu, J., Liu, J., He, W., Qu, Y., Ren, N., & Feng, Y. (2014). Enhanced electricity generation for microbial
fuel cell by using electrochemical oxidation to modify carbon cloth anode. Journal of Power
Sources, 265, 391-396. https://doi.org/10.1016/j.jpowsour.2014.04.005
Liu, L., & Choi, S. (2017). Self-sustaining, solar-driven bioelectricity generation in micro-sized
microbial fuel cell using co-culture of heterotrophic and photosynthetic bacteria. Journal of
Power Sources, 348, 138-144. https://doi.org/10.1016/j.jpowsour.2017.03.014