Novasinergia 2021, 4(1), 6-41 40
Stallings, W. (2015). Foundations of modern networking: SDN, NFV, QoE, IoT, and Cloud. Addison-
Wesley Professional. Retrieved from https://books.google.com/books?id=nL\_QCgAAQBAJ
Su, R., Zhang, D., Venkatesan, R., Gong, Z., Li, C., Ding, F., & Zhu, Z. (2019). Resource allocation for
network slicing in 5G telecommunication networks: A survey of principles and models. IEEE
Network, 33(6), 172-179. https://doi.org/10.1109/MNET.2019.1900024
Tataria, H., Shafi, M., Molisch, A., Dohler, M., Sioland, H., & Tufvesson, F. (2021). 6G Wireless
Systems: Vision, Requirements, Challenges, Insights, and Opportunities. Proceedings of the
IEEE, 1-34. https://doi.org/10.1109/JPROC.2021.3061701
Tello-Oquendo, L., Akyildiz, I., Lin , S.-C., & Pla , V. (2018). SDN-based architecture for providing
reliable internet of things connectivity in 5G systems. 17th annual mediterranean ad hoc
networking workshop (med-hoc-net), (pp. 1-8).
https://doi.org/10.23919/MedHocNet.2018.8407080
Tello-Oquendo, L., Leyva-Mayorga, I., Pla, V., Martínez-Bauset, J., & Casares-Giner, V. (2015).
Analysis of LTE-A random access procedure: A foundation to propose mechanisms for
managing the M2M massive access in wireless cellular networks. Workshop on innovation on
information and communication technologies (itaca-wiict 2015), (pp. 95-104).
Tello-Oquendo, L., Lin, S.-C., Akyildiz, I., & Pla, V. (2019). Software-defined architecture for QoS-
aware IoT deployments in 5G systems. Ad Hoc Networks, 93, 101911.
https://doi.org/10.1016/j.adhoc.2019.101911
Tello-Oquendo, L., Vidal Catalá, J.-R., Pla, V., & Martínez Bauset, J. (2018). Extended access barring
for handling massive machine type communication (mMTC) deployments. Novasinergia, 1(2),
38-44. https://doi.org/10.37135/unach.ns.001.02.04
Tello-Oquendo, L., Vidal, J.-R., Pla, V., & Guijarro, L. (2018). Dynamic access class barring parameter
tuning in LTE-A networks with massive M2M traffic. 17th annual mediterranean ad hoc
networking workshop (med-hoc-net), (pp. 1-8).
https://doi.org/10.23919/MedHocNet.2018.8407086
Tetcos. (2021). 5G NR. Retrieved from https://www.tetcos.com/5g.html
University of Surrey. (2021). 5G Testbeds. Retrieved from https://www.surrey.ac.uk/institute-
communication-systems/facilities/5g-testbed
Varoutas, D., Katsianis, D., Sphicopoulos, T., Stordahl, K., & Welling , I. (2006). On the economics of
3G mobile virtual network operators (MVNOs). Wireless Personal Communications, 36(2), 129-
142. http://doi.org/10.1007/s11277-006-0027-5
Vidal, J.-R., Tello-Oquendo, L., Pla, V., & Guijarro, L. (2019). Performance study and enhancement
of access barring for massive machine-type communications. IEEE Access, 7, 63745–63759.
doi:https://doi.org/10.1109/ACCESS.2019.2917618
Xiong, Z., Zhang, Y., Nivato, D., Deng, R., Wang, P., & Wang, L. (2019). Deep Reinforcement
Learning for Mobile 5G and Beyond: Fundamentals, Applications, and Challenges. IEEE
Vehicular Technology Magazine, 14(2), 44-52. https://doi.org/10.1109/MVT.2019.2903655
Xu, Y., Gui, G., Gacanin, H., & Adachi, F. (2021). A Survey on Resource Allocation for 5G
Heterogeneous Networks: Current Research, Future Trends and Challenges. IEEE
Communications Surveys Tutorials, 1-1. https://doi.org/10.1109/COMST.2021.3059896
Yachika, Kaur, P., & Garg, R. (2021, january). A survey on key enabling technologies towards 5G.