Novasinergia 2021, 4(2), 48-61 60
Belyaev, A., & Ryazanova, T. (2019). Stochastic sensitivity of attractors for a piecewise
smooth neuron model. Https://Doi.Org/10.1080/10236198.2019.1678596, 25(9–10),
1468–1487. https://doi.org/10.1080/10236198.2019.1678596
Boyarsky, A., & Góra, P. (1997). Laws of Chaos: Invariant Measures and Dynamical Systems in
One Dimension. 420. http://www.amazon.co.uk/Laws-Chaos-Invariant-Probability-
Applications/dp/0817640037
Choi, Y. (2004). Attractors from one dimensional lorenz-like maps. Discrete and Continuous
Dynamical Systems, 11(2–3), 715–730. https://doi.org/10.3934/DCDS.2004.11.715
Coelho, Z., Lopes, A., & da Rocha, L. F. (1995). Absolutely continuous invariant measures
for a class of affine interval exchange maps. Proceedings of the American Mathematical
Society, 123(11), 3533–3533. https://doi.org/10.1090/s0002-9939-1995-1322918-6
Du, R. H., Wang, S. J., Jin, T., & Qu, S. X. (2018). Phase order in one-dimensional piecewise
linear discontinuous map. Chinese Physics B, 27(10), 100502.
https://doi.org/10.1088/1674-1056/27/10/100502
Eslami, P., & Góra, P. (2011). On eventually expanding maps of the interval. American
Mathematical Monthly, 118(7), 629–635.
https://doi.org/10.4169/amer.math.monthly.118.07.629
Glendinning, P., & Jeffrey, M. R. (2019). An Introduction to Piecewise Smooth Dynamics.
http://link.springer.com/10.1007/978-3-030-23689-2
GÓRA, P. (2009). Invariant densities for piecewise linear maps of the unit interval. Ergodic
Theory and Dynamical Systems, 29(5), 1549–1583.
https://doi.org/10.1017/S0143385708000801
Jain, P., & Banerjee, S. (2003). Border-collision bifurcations in one-dimensional
discontinuous maps. International Journal of Bifurcation and Chaos in Applied Sciences
and Engineering, 13(11), 3341–3351. https://doi.org/10.1142/S0218127403008533
Milnor, J. (1985). On the concept of attractor. Communications in Mathematical Physics, 99(2),
177–195. https://doi.org/10.1007/BF01212280
Morales, C. A., & Pujals, E. R. (1997). Singular strange attractors on the boundary of Morse-
Smale systems. Annales Scientifiques de l’École Normale Supérieure, 30(6), 693–717.
https://doi.org/10.1016/S0012-9593(97)89936-3
NUSSE, H. E., & YORKE, J. A. (1995). BORDER-COLLISION BIFURCATIONS FOR
PIECEWISE SMOOTH ONE-DIMENSIONAL MAPS.
Http://Dx.Doi.Org/10.1142/S0218127495000156, 05(01), 189–207.
https://doi.org/10.1142/S0218127495000156
Parry, W. (1964). Representations for real numbers. Acta Mathematica Academiae Scientiarum
Hungaricae, 15(1–2), 95–105. https://doi.org/10.1007/BF01897025
Parry, William. (1979). The lorenz attractor and a related population model. Ergodic Theory.
Lecture Notes in Mathematics, 729, 169–187. https://doi.org/10.1007/BFB0063293
Rajpathak, B., Pillai, H. K., & Bandyopadhyay, S. (2012). Analysis of stable periodic orbits in
the one dimensional linear piecewise-smooth discontinuous map. Chaos (Woodbury,
N.Y.), 22(3), 033126. https://doi.org/10.1063/1.4740061
Rajpathak, B., Pillai, H. K., & Bandyopadhyay, S. (2015). Analysis of unstable periodic orbits
and chaotic orbits in the one-dimensional linear piecewise-smooth discontinuous
map. Chaos, 25(10). https://doi.org/10.1063/1.4929382