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 Abstract: Since its beginning, Fuzzy logic has shown its usefulness 

in different areas of knowledge; for the particular case of process 

control, from the construction of process models to the design of 

advanced controllers, it has proven its effectiveness and importance 

on industrial applications.  This work presents a guide for studying 

systems based on fuzzy logic for process control, starting from the 

origins, theoretical foundations, and a guide for constructing some 

loop controllers implemented on a benchmark plant. 
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Resumen: Desde sus inicios la lógica Difusa ha demostrado su utiidadl en 

distintas áreas del conocimiento; para el caso particular de sistemas de 

control de procesos, desde la construcción de modelos de procesos, hasta el 

diseño de controladores avanzados ha probado su efectividad e importancia 

en aplicaciones industriales. En este artículo se presenta una guía para el 

estudio de sistemas basados en lógica difusa enfocados al control de 

procesos, iniciando con sus origenes, fundamentos teóricos y una guía para 

la construcción de algunos controladores de lazo implementados sobre una 

planta benchmark. 
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1. Introduction 

Lotfi Zadeh introduced fuzzy logic in the mid-sixties. Its use in various branches of 

science has been incessant, and of course, the applications in process control are numerous 

(Kavsek-Biasizzo, Skrjanc, & Matko, 1997). The term "Fuzzy" comes from the English word 

"fuzz," which denotes the lint covering the chicks' body when leaving the egg. This English 

term means "confusing, blurry, undefined, or out of focus." (Reznick, 1997). 

The concept of fuzzy logic is widespread; it is associated with how people perceive the 

environment; for example, ideas related to a person's height, the speed with which an object 

is moving, the prevailing temperature in a room, are formulated ambiguously daily and 

depends on who perceives the physical effect or chemical, will be your statement about such 

a phenomenon. A person can be tall or short; something can move fast or slow; a 

temperature can be low or moderate or high. These statements about a variable are 

ambiguous because fast, low, high are statements by the observer. These may vary from one 
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observer to another. For example, you can ask when something is hot or cold, how low the 

temperature is when We say cold, or how high it is when we say hot. 

Fuzzy sets precisely define these ambiguities and are an extension of the classical set theory, 

where an element belongs or does not belong to a set, such element has only two 

possibilities, to belong or not, an item is bi-valued they are not defined ambiguities. With 

fuzzy sets, an attempt is made to model the ambiguity with which perceives a variable. 

Fuzzy sets are the basis for fuzzy logic, of the same So classical set theory is the basis for 

Boolean logic. With the fuzzy sets, logical if-then statements are made, defining these with 

Fuzzy Logic. This theme is typical of artificial intelligence, where it is tried to emulate in 

human thought. Our field of study is industrial control; we have to consider the operator's 

experience or knowledge base; this will be useful to emulate the human behavior with a 

machine, despite being very limited. 

The incorporation of fuzzy logic into control systems gives rise to what we call fuzzy control 

systems. There are two major areas within the control systems: modeling or identification 

and control itself or direct control. First, we focus on process control, assuming the model 

of this is known. The idea is straightforward; it is about logically determining what should 

be done to achieve the control objectives best possible from a human operator's knowledge; 

without this basis, it is impossible to develop an application and make it work properly. 

The references to applications of fuzzy logic that can be found in the literature are pervasive. 

Below is a very brief summary to put into perspective the broad scope of application of the 

theory of fuzzy logic. 

In 1972 E. Mamdani used the theory of fuzzy logic and the expert knowledge of workers to 

design a diffuse controller that properly handled a laboratory steam engine (Kavsek-

Biasizzo, et al.,  1997). In 1976 H. Zimmermann employed fuzzy logic in decision-making 

problems, evaluating applications to bank loans (Reznick, 1997). Finally, in 1980 Holmblad 

implemented a diffuse controller for an industrial furnace. It constituted the first permanent 

industrial application of fuzzy Logic ( Menzl, Stuhler, & Benz, 1996). In 1982 M. Dohnal 

raised the possibility of modeling complex chemical engineering processes, using models 

based on fuzzy logic and linguistic variables (Chen, 1997). In Japan, in 1984, fuzzy logic was 

used to control chemicals in a water treatment plant. In addition, diffuse control systems 

were also implemented in Sendai city's underground network. In this case, the diffuse 

control system was responsible for taking the train up to the predetermined speed and 

keeping it in this condition, regardless of the geographical features of the route (curves, 

ascents, descents, etc.), and then stopping gently at the destination site (Henson & Seborg, 

1994 ;  Ha, Nguyen, Rye, & Durrant-Whyte, 1998). In 1985 M.  Togai and H. Watanabe 

developed the first fuzzy logic chip. This work showed the implementation of an inference 

system based on the maximum-minimum operation of fuzzy set theory. This mechanism 

could simulate human reasoning. Measurements made to the processor have reported that 

it could make around 80000 logical inferences per second (Waewsak, Nopharatana, & 

Chaiprasert, 2010). In 1985 Vaija and Dohnal developed a fault detection system for complex 

processes, with poorly defined mathematical models and inaccurate measurements. The 

work was performed using logic and fuzzy algorithms for the treatment of the problem. The 

fault detection system was implemented in a low-density polyethylene reactor with 

outstanding results (Vaija, Turunen, Jarvelainen, & Dohnal, 1985). In 1986 the Japanese 
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company Omron used fuzzy logic to design an expert system to diagnose diseases. Tazaki 

and collaborators developed an automated diagnostic system based on an expert system 

incorporating fuzzy Logic (Lu & Chen, 1994). Kraslawski and A. Gorak used in 1987 an 

optimization based on fuzzy logic to design a multicomponent distillation column (Babaei 

& Setayandeh, 2018). This work was subsequently completed using considerations of 

separation and balancing stages and considering investment and operating costs. In 1988 

the Japanese company Omron sold the first general-purpose fuzzy logic controller (Reznick, 

1997). B. Lashgari used fuzzy classification theory in 1989 to analyze geophysical data. The 

application of Fuzzy Logic was motivated by how inaccurate or unreliable geophysical data 

can become and by the inconsistencies generated in the results when applying Bayesian 

classifiers (Tzafestas & Rigatos, 1999). Fuzzy logic control has also been employed in 

automatic drug administration systems. For example, Lonken and Mahfouf presented in 

1989 a controller for the supply of anesthesia for muscle relaxation ( Doctor, Syue, Liu, & 

Shieh, 2015). Isaka et al. reported in 1988 the construction of an automatic blood pressure 

controller based on fuzzy Logic (Meier, Nieuwland, Hacisalihzade, & Zbinden, 1992). Also, 

in 1988, Hirota and collaborators designed a robotic arm equipped with a special camera 

capable of playing two-dimensional ping-pong. Arms control was regulated by 25 fuzzy 

logic rules, which operated using the images captured by the camera (Modi, Sahin, & Saber, 

2005). In 1990 the Sony company announced a television launch with fuzzy logic-based 

technology, automatically adjusting the image quality. For its part, the company Fuyitso 

launched an electronic "eye" also based on fuzzy logic technology. From 1991 fuzzy logic 

ceased to be a laboratory scientific novelty to become an industrial tool. Applications have 

been greatly diversified; fields such as economics, sociology, marketing, etc., have received 

the contribution of fuzzy logic in solving their problems. Below are some of the latest 

applications in chemical engineering.  1998 Jones et al. reported on the design and 

subsequent use of a fuzzy logic controller for a Chemical Vapor Deposition (CVD) reaction 

system. In this case, the diffuse controller was used to control the flow of one of the reactants 

based on the measurement of surface temperature. This process is one of the most recently 

used to produce very thin films of material (Reznick, 1997). Melin and Castillo presented in 

1999 the combination of fuzzy logic with fractal theory and its application to an automated 

quality control system. In this work, fuzzy logic was used to decide the quality of the 

materials produced. In contrast, the fractal theory was used to classify the complex 

geometries of materials (Melin & Castillo, 2007). In 1999 Abonyi and collaborators presented 

a study on applying fuzzy logic to model the dynamics of chemical processes and 

subsequently build a diffuse adaptive controller. In this case, the researchers chose to use 

an IMC (Internal Model Control) type design, reversing the fuzzy model previously 

developed by them, to implement the BMI (Mehra, Rouhani, Eterno, Richalet, & Rault, 

1982). Zhao and collaborators presented in 2000 a predictive control strategy based on fuzzy 

logic for chemical processes with significant downtimes. The predictive fusion of the 

designed controller was done through a set of fuzzy logical rules, rather than using the 

mathematical models of the conventional predictive method (Mehra  et. al., 1982). Sarma 

reported in 2001 the design of a diffuse adjustable gain controller. The performance of the 

designed controller was tested in a permanently agitated reactor, with a highly exothermic 

and unstable open-loop reaction. The control strategy implemented was multivariate. 

Sebzalli and Wang presented in 2001 a procedure to identify functional spaces and design 
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production strategy in the process of catalytic cracking of a refinery. The procedure 

involved using principal component analysis and cluster analysis by fuzzy Logic (Garcia & 

Morari, 1982). In 2001, Kyvelidis et al. presented image processing to detect corrosion 

failures in coatings on numerous surfaces. The researchers employed digital filtering 

techniques, texture analysis, and segmentation techniques, as well as fuzzy decision 

algorithms in the proposed design (Hoang, 2020). The application of fuzzy logic in the 

design of a multivariate control strategy for two tubular furnaces used in a refinery. The 

control strategy designed took into account the interaction between the control loops and 

used a diffuse model of the process to predict their behavior (Abilov, Zeybek, Tuzunalp, & 

Telatar, 2002). 

The latest works mentioned show that today's trend is to combine fuzzy logic with other 

techniques, finding synergy between the combined techniques. Precisely this is the idea on 

which this research is based, combining a very robust control technique with the flexibility 

and "intelligence" of fuzzy logic. 

2. Fundamentals of Fuzzy Logic 

2.1. Set Theory and Fuzzy Logic 

When studying the theory of fuzzy sets, one of the first ideas that appear is that of a 

function of membership. For example, suppose you have a conventional set A. In that case, 

you use the membership function A(x)   to indicate whether the element x belongs to  A, as 

follows: 

1 si 
( )

0 si 
A

x A
x

x A



= 


 (1) 

Figure 1a shows the situation exposed; element x1 has a membership value equal to 0 since 

it is not included in set A, while element x2 has a membership value equal to 1 since it 

belongs to set  A. This is the fundamental property of conventional logic; the membership 

function can only have two values, 0 or 1. In the case of fuzzy sets, the situation is as shown 

in Figure 1b. Boundaries are not precisely defined; the degree of membership of an element 

can be any value between 0 and 1 between the membership of an element in a conventional 

set and a fuzzy set. 

 

Figure 1: (a) Conventional Set (b) Fuzzy Set 

To understand the meaning of the membership function in fuzzy logic, now consider the 

following scenario. First, consider that the average temperature of the day is desired; 

whether it is cold temperature or warm, the limits are decided as follows: 
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Figure 2 shows the graphical representation of the relationships proposed in equation (2). 

Temperatures below 15 oC have membership grade 1 for the "Cold Day" set, and 

membership grades 0 for the "Mild Day" and "Hot Day" sets, and so on. 

Figure 2: Representation of conventional sets using degrees of memberships. 

Now, consider the case where on a particular day, the average temperature is 14.95 oC; 

according to the definitions adopted, this day belongs to cold days. However, if the 

temperature were 15.01 oC, a difference of only 0.06 oC, the day would be considered mild. 

This, from a practical point of view, does not make much sense since the difference between 

the two temperatures is so tiny that it can only be appreciated using exact measuring 

instruments. In the absence of these, the definition of the type of day is imprecise.  

Figure 3 shows a possible graphical representation of fuzzy sets for the day's classification 

according to their temperature. In this case, the day is cold with a degree of membership if 

the temperature is less than 3 oC. The degree of membership to this set decreases linearly 

until it is 0 at 20 oC. Similarly, the degree of membership to the "Hot Day" set is defined as 

the degree of membership 0 to 20 oC, increasing linearly until it reaches 1 to 35 oC and 

remaining so for the rest of the temperatures. In the case of the set "Mild Day," the degree 

of membership is only 20 oC; for higher temperatures, the degree of membership decreases 

linearly to 0 to 35 oC. For temperatures less than 20 oC the behavior is symmetrical. 

 

Figure 3: Fuzzy representation of sets using degrees of memberships. 

Consider now the case analyzed above, a day with an average temperature of 14.95 oC. 

Using Figure 3, it can be determined that for this temperature, there are three degrees of 

membership for this temperature, 0.32 for the set "Cold Day," 0.69 for the set "Mild Day," 
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and 0 degrees for "Hot Day." These results coincide better with the assessment that would 

give anyone who does not live in Sahara; if you ask how, you would classify a day with this 

temperature; it is not a cold day; it is almost temperate. This is precisely the versatility of 

fuzzy logic; it allows mathematical expression of the vagueness and imprecision in the real 

world. 

2.2. Definition of Fuzzy Set 

First, it is necessary to define the universal set  U as the set containing all possible 

elements, which has the characteristics to consider (Zadeh, 1965). The concept is equivalent 

to the concept of the universe used in Thermodynamics. Taking this concept into 

consideration, one can define a fuzzy set A in the universe U as the set of ordered pairs of a 

generic element and their degree of membership  A(u), i.e.: 

( ) UuuuA = /)(,  (3) 

For practical purposes, it is the degree of membership that defines whether an element 

belongs to the fuzzy set and to what degree. For example, consider the set A of integers that 

are "near zero," then: 

 4/0,3/1.0,2/4.0,1/6.0,0/1,1/6.0,2/4.0,3/1.0,4/0 −−−−=A   (4) 

That is, -4 has a degree of membership 0 to this set, while 0 has a degree of membership 1 

and 3 has a degree of membership 0.1, and so on for the rest of the elements. 

2.3. Membership Function 

Membership functions are curves that allow you to determine the degree of belonging of an 

element u to a fuzzy set A. They are usually denoted by , and their value is always between 

0 and 1. Figure 4 shows the typically used membership functions: 

 
Figure 4: Membership Functions (a) Triangular (b) Trapezoidal (c) Gaussian (d) Gbell 

The choice of the membership function to be used depends on the nature of the concept to 

be handled. For example, it is not the same to speak of "High Temperature" in an atomic 
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reactor or an iron smelter as to do it when referring to a hot day. The final decision on the 

form of the membership functions to be used rests with the designer who analyzes the 

problem. However, triangular and trapezoidal membership functions commonly appear in 

the literature, possibly due to their simplicity. 

2.4. Universe of Discourse 

The universe of discourse is defined as the set of values that a variable can take. It is 

equivalent to the notion of the "domain" of a function. Figure 5 graphically depicts the fuzzy 

set of "numbers close to zero." In the graph, it is possible to observe that the universe of 

discourse for this case is the interval [-5,5]. The universe of discourse is always a 

conventional whole. Usually, the universe of discourse is denoted as E. 

 
Figure 5: Universe of Discourse for input Number 

3. Operations with Fuzzy Sets 

The following sections describe some of the essential operations and definitions 

related to fuzzy sets. 

3.1. Operations with Fuzzy Sets 

Let E be the Universe of Discourse to which the variable x belongs.  Let A and B be 

fuzzy sets contained in E. Then A is said to be a subset of B if for any element x:  

BA  for all x if  )()( xx BA    (5) 

A  is contained in B if the membership values of each element of x in A are less than or equal 

to its corresponding membership values in B. 

For example, if you have the fuzzy sets A and B: 

 321 xxxE =  

 321 /7.0/5.0/3.0 xxxA =   and  321 /1/7.0/5.0 xxxB =  

Then 

BA  since 17.07.05.05.03.0   

(6) 
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3.1.1. The intersection of Fuzzy Sets 

Let E the Universe of Discourse for the variable x, and let A and B be two fuzzy sets 

contained in E. The intersection of A with B is the most significant subset of E, which is at 

the same time part of A and also of B. The degree of membership of the intersection of A 

with B for each element is calculated as: 

 )()(min)( xxx BABA  =   (7) 

The degree of membership of the intersection of A with B is the minimum value between 

the membership values of each element in each fuzzy set. For example, If A and B are 

defined in E as: 

If  321 /7.0/5.0/3.0 xxxA =  and   321 /6.0/7.0/2.0 xxxB =  

Then 

 321 /6.0/5.0/2.0 xxxBA   

 (8) 

This could be seen in a graphic in Figure 6. 

 
Figure 6: Intersection of Fuzzy Sets A and B 

3.1.2. Union of Fuzzy Sets 

Let A and B be two fuzzy sets contained in the discourse universe E, the union AB 

is the smallest subset in  E, including A and B. The degree of membership of each element x 

is determined in this case as: 

 )()(min)( xxx BABA  =   (9) 

In other words, the union is the contour that includes both sets A and B, resulting in a set 

larger than A or B. For example, If A and B are defined in E as: 

If  321 /7.0/5.0/3.0 xxxA =  and   321 /6.0/7.0/2.0 xxxB =  

Then 

 321 /7.0/7.0/3.0 xxxBA   

 (10) 

This could be seen in the graphic in Figure 7. 

 
Figure 7: Union of Fuzzy Sets A and B 



Novasinergia 2021, 4(2), 06-37                                                                                                                                                           14 

 

3.1.3. Complement of Fuzzy Sets 

Let E be the Universe of Discourse of x, with the fuzzy set A contained in E. The 

complement of A concerning E is A', which contains the elements x contained in E, which 

are not members of A. The degree of membership of the add-in can be calculated as: 

 )(1)(´ xx AA  −=   (11) 

This could be visualized in Figure 8. 

 
Figure 8: Fuzzy Complement of Set A  

3.1.4. Overall Level 

Let E be the Universe of Discourse of x. The set of elements of a fuzzy set A, with at 

least one degree of membership  is called a level set   or a cut set  . This definition can 

be expressed as: 

  = )(/ xExA A   (12) 

3.1.5. Properties of operations of Fuzzy Sets 

Given the discourse universe E and three fuzzy sets A, B, and C contained in E, the 

properties are shown in table 1 are satisfied. Moreover, most of the properties shown are 

identical for conventional sets: 

Table 1: Properties of Operations of Fuzzy Sets 

Law of Contradiction 0= AA  

Law of excluded middle XAA =  

Idempotence AAAAAA == ,  

Involution AA =  

Commutativity ABBAABBA == ,  

Associativity 
( ) ( )

( ) ( )BCABAC

BCABAC

=

=
 

Distributivity 
( ) ( ) ( )

( ) ( ) ( )CABACBA

CABACBA

=

=
 

Absorption 
( )

( ) ABAA

ABAA

=

=
 

Absorption of Complement 
( )
( ) BABAA

BABAA

=

=
 

DeMorgan's Law 
( )

( ) BABA

BABA

=

=
 



Novasinergia 2021, 4(2), 06-37                                                                                                                                                           15 

 

3.1.6. Support of Fuzzy Sets 

The support of a fuzzy set A, S(A) is the conventional set of all elements of the 

universe of discourse E. The membership function has a nonzero value. 

 0)(/)( = xExAS A   (13) 

3.1.7. Height of a Fuzzy Sets 

The height of a fuzzy set A; hgt(A), is given by the supremum of the membership 

function for the entire Universe of Discourse E: 

 )(sup)( xAhgt AE =   (14) 

In this definition, the supremum refers to the largest possible degree of membership in the 

fuzzy set. 

3.1.8. First expansion principle  

In the description of many systems, different variables interrelate with each other 

using algebraic expressions and equations that reflect physical laws or properties of the 

system. For example, for an ideal gas, the expression: 

nRTPV =   (15) 

Relates to all variables that affect the behavior of the gas. For example, suppose volume V 

is defined as a fuzzy set. In that case, it is desired to know how the pressure P will be affected 

and its behavior when V changes in terms of fuzzy sets. 

In general, the question is: How to find the behavior in fuzzy terms of a variable, if its 

interrelation with another variable whose behavior in fuzzy terms is known? 

The first principle of extension answers this question. Which states that:  

Suppose one has a fuzzy set A, on the universal set U, and f is a mapping function from the 

universe U to the universal set Y, y=f(x). In that case, it can define a fuzzy set B in Y as: 

( ) UxxfyB yyAfB === ),()(,)(    (16) 

Where: 









=





=
−

−

−

0)(0

)(

0)()(sup

)(
1

1

1

yfif

yfx

yfifx

y

A

B



  (17) 

The reason the supremum is used is that the function f can "map" different elements of the 

universe U into an element of the universe Y. Therefore, this element could have several 

degrees of belonging; hence it is necessary to choose a single degree of belonging, the 

supreme select among them the largest. 
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3.1.9. Fuzzy Numbers 

Suppose the membership function support is part of the real axis. In that case, the 

fuzzy set represents a fuzzy number when the membership function is normal and convex. 

A membership function is regular if its height hgt is 1. In contrast, a membership function is 

considered convex if it does not assign more than one membership value to each element of 

its support. Geometrically this condition implies the non-existence of "bays" and/or 

"enclaves" in the contour of the membership function. Initially, its shape must be 

monotonically increasing, reaching a maximum value of 1, and then decrease, also 

monotonously or remain constant in this value if the trapezoidal type function is. Figure 9 

shows nonconvex membership functions: 

 
Figure 9: Nonconvex membership functions  

It is possible to define all arithmetic operations for fuzzy numbers. Similarly, fuzzy algebraic 

equations (Reznick, 1997), fuzzy differential equations have been defined, and the theory of 

stochastic phenomena has even been applied using fuzzy numbers (Liu, Heiner, & Yang, 

2016). These works show that for every conventional mathematical operation, an equivalent 

operation can be defined using fuzzy numbers 

3.2. Linguistic variables 

A linguistic variable u in the universe of discourse E is defined as the set of linguistic 

value names  T(u). Each value is a fuzzy number defined in E. For example, if u means speed, 

then in terms of its set, T(u) can be defined as: 

( )  fastmediumslowspeedT ,,=  (18) 

In the universe of discourse E = [0,100].  Slow, medium, and fast are linguistic values of the 

linguistic velocity variable. Linguistic values accept qualifiers such as much, very, little, etc.. 

These qualifiers are used to increase linguistic values from a small collection of primary 

terms. For this purpose, processes known as intensification or concentration, dilation and 

defuzzification are used. For example, the very operator is defined as a concentration 

operator since, from the point of view of fuzzy logic: 

2)( uuvery =  (19) 

Mathematical expressions that allow expressing qualifiers such as "very" or "enough" have 

been determined by some psychological experiments (Reznick, 1997). The mathematical 

forms commonly used to define them express the average opinion of a typical human 

expert. Of course, this implies that mathematical definitions by different authors may be 
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different and that only common sense limits them. Nevertheless, authors such as Cox (2005) 

had classified the most commonly used qualifiers.  

It is essential to mention that fuzzy qualifiers do not have a similar operator in conventional 

logic. Thus, for example, the linguistic terms very horizontal, very rectangular, etc., have no 

meaning. 

3.3. Fuzzy Relations 

The relationships between fuzzy sets and their application will now be considered, 

emulating an essential aspect of human thought: logical implication. This concept 

establishes the connections between cause and effect, or more formally, between a condition 

and its consequent. 

In technical areas such as engineering or process control, these implications are present in 

almost any situation. For example, when a machine is operated, a process is modeled, or 

when a decision about purchasing equipment is made, etc., these decisions are based on 

logical implications. 

Inference rules are usually used, as follows: 

If Cause = A, then Effect = C 

Where A and C set (fuzzy or conventional). For example: 

If the level is high, then close the valve 

In this case, the terms high and close represent fuzzy sets, high represents the linguistic value 

of the level variable. At the same time, close represents the linguistic value of the valve 

position variable.  

There are much stricter definitions of fuzzy relations, which can be consulted in the 

literature (Reznick, 1997). However, with what has been described up to this point, it is 

enough to understand how fuzzy inference works intuitively. 

4. Fuzzy logic-based controllers 

Most conventional methods of controller design are based on the model of the 

process you want to control. Unfortunately, this implies at least two severe weaknesses. 

First, controllers are designed "tailored" to the process; the control strategy is designed only 

for the process that responds to the available model; if the conditions of the process change, 

the control strategy must be designed again. In addition, the time and effort involved in 

developing drivers for particular applications do not make them attractive from the 

practical point of view of the industry at large.  

Second, for real complex processes, the model is often not known with enough precision to 

design a control strategy that is effective under all operating conditions. 

A control strategy is then needed that does not require a process model based on the 

system's dynamic behavior and on the information that human experts have about the 

behavior of the process. Fuzzy logic emerges then as an alternative for the management of 

these systems. 
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Fuzzy logic-based control is a simple and easy-to-implement technology. It has the 

advantage of being very flexible and applicable to almost any system. The responses you 

get from the systems in which they are deployed are very smooth and very rarely reach 

unstable conditions. It allows incorporating the experience and knowledge that humans 

have about the process, who are in contact with it every day (Reznick, 1997). 

The first to implement control based on fuzzy Logic was Mamdani (Harliana & Rahim, 

2017), using a steam boiler and engine system as a process. Mamdani defined two input 

variables, the heat fed to the boiler and the opening of the valve that feeds the engine 

cylinder. In the same way, two output variables were defined: the pressure of the steam in 

the boiler and the engine's speed. This process presents a highly nonlinear behavior, the 

dynamics of the system changes with the point at which it is operating, so to implement 

linear control strategies, it is necessary to retune the controller whenever the point of 

operation of the process changes if you want to maintain a good performance of the control 

system. 

Mamdani proposed to control the process using some fuzzy rules of involvement, such as: 

If pressure error is Negative Large, Then the heat fed is Positive Large 

The control strategy measured some process variables, applied some fuzzy rules, and 

determined the action to follow as necessary. 

Mamdani designed his control strategy based on 24 fuzzy rules and using a PDP-8 

computer. He also used a commercial digital controller as a comparison pattern. In all cases, 

the diffuse controller showed better performance than the digital controller, thus initiating 

a new era in process control (Reznick, 1997). 

4.1. The basic structure of Mamdani Type Fuzzy Controller 

A Mamdani-type diffuse controller consists of three main blocks (Reznick, 1997): 

• Fuzzification Interface. 

• Fuzzy Processing. 

• Transformation to conventional value 

The fuzzification interface is responsible for converting the conventional values of the 

variables that enter the controller (error, variation of the error, etc.) into fuzzy values. It is 

necessary to remember that the signals that feed the controller come from a sensor, which 

sends readings proportional to the monitoring's physical variable. Therefore, they have a 

traditional value, not diffuse. Another aspect that needs to be considered in this conversion 

block is using a scaling factor to convert the actual input value into a value in the speech 

universe predicted by the designer.  

Figure. 10 shows an outline of this process; the input is converted to an equivalent value on 

the scale of -1 to 1, then converted is the degree of belonging to each of the preset fuzzy 

numbers; 0.3 to Small Negative and 0.7 to Zero 
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Figure 10: Fuzzification Process 

The next stage is fuzzy processing. At this stage, fuzzy relationships that the designer 

establishes are used to decide what is convenient to take and keep the process under control. 

Fuzzy relationships, as mentioned in previous sections, have the form: 

If Background then Consequent 

The designer sets these rules based on his knowledge of the system and how he wants it to 

behave. This incorporates the human knowledge of an expert in the controller, giving it 

"intelligence" and flexibility.  

Usually, when evaluating fuzzy input values, more than one rule comes into play, so the 

fuzzy processing result is a series of also fuzzy sets, the union of which gives the final result.  

Figure 11 shows how the action to be taken by the controller is inferred from the values of 

the input variable; the fuzzy rules are applied, in this case, only two. Then the fuzzy sets 

obtained by applying the rules are joined, thus achieving the fuzzy value of the linguistic 

variable that defines the action to be taken by the controller 

 
Figure 11: Fuzzy Inference of Controllers Output 

Since the evaluation of fuzzy inference rules is a fuzzy set, it is now necessary to convert it 

into a traditional value sent to the final control element. This operation is called 

defuzzification.  

There are several methods to perform a transformation from fuzzy value to conventional 

value (Jang, Sun, & Mizutani, 1997), among them can be mentioned:  

Centroid of Area 



Novasinergia 2021, 4(2), 06-37                                                                                                                                                           20 

 




=

z

A

z

A

z

dzz

zdzz

COA
)(

)(





 
(20) 

 

Bisector of Area 

 =






BOA

A

BOA

A
z

z

dzzdzz )()(  (21) 

Media of Maximum 




=

z

zz

dz

zdz

MOM
´

 (22) 

4.2. Takagi-Sugeno Fuzzy Modeling  

Modeling by fuzzy identification receives great attention in nonlinear modeling, 

especially the Takagi-Sugeno (T-S) fuzzy model because of its ability to approximate any 

nonlinear model (Takagi & Sugeno, 1985). T-S fuzzy modeling has been used on nonlinear 

control systems (Herrera, Sarszosa, Paredes, & Camacho, 2019; Jiang, Gao, Shi, & Xu, 2010; 

Meda-Campana, Gomez-Mancilla, & Castillo-Toledo, 2012; Klug, Castelan, Leite, & Silva, 

2015). The main idea of T-S fuzzy modeling is to approximate any nonlinear function by 

suitable linear subsystems.  

An optimization method to improve the global approximation, local, and modeling capacity 

of the fuzzy T-S model is presented by (Al-Hadithi, Jiménez, & Matía, 2012). The main 

objective is to obtain an approximation of nonlinear functions with optimized performance. 

The basic idea in the estimation of parameters of the nonlinear system is to minimize a 

quadratic performance index, and it is based on the identification of the functions as follows: 
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Where for each IF-THEN nii
R

1 rule of a fuzzy system, in such a way that for a system of 

order n it can be rewritten as follows: 

𝑆(𝑖1⋯𝑖𝑛): 𝐼𝐹 𝑥1 𝑖𝑠 𝑀1
𝑖1 & 𝑥2 𝑖𝑠 𝑀2

𝑖2& ⋯  & 𝑥𝑛 𝑖𝑠 𝑀𝑛
𝑖𝑛 

(24) 

𝑇𝐻𝐸𝑁 �̂� = 𝑃0
(𝑖1⋯𝑖𝑛)

+ 𝑃1
(𝑖1⋯𝑖𝑛)

𝑥1 +  𝑃2
(𝑖1⋯𝑖𝑛)

𝑥2 + ⋯ +  𝑃𝑛
(𝑖1⋯𝑖𝑛)

𝑥𝑛 

The fuzzy estimate of the output is given by 

�̂� =
∑ ⋯

𝑟1
𝑖1=1

∑ 𝑤(𝑖1⋯𝑖𝑛)(𝑥)𝑟𝑛
𝑖𝑛=1 [𝑃0

(𝑖1⋯𝑖𝑛)
+ 𝑃1

(𝑖1⋯𝑖𝑛)
𝑥1 + 𝑃2

(𝑖1⋯𝑖𝑛)
𝑥2 + ⋯ + 𝑃𝑛

(𝑖1⋯𝑖𝑛)
𝑥𝑛]

∑ ⋯
𝑟1

𝑖1=1
∑ 𝑤(𝑖1⋯𝑖𝑛)(𝑥)𝑟𝑛

𝑖𝑛=1

  (25) 

Where: 
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𝑤(𝑖1⋯𝑖𝑛)(𝑥) = 𝑢1𝑖1
(𝑥1)𝑢2𝑖2

(𝑥2) ⋯ 𝑢𝑛𝑖𝑛
(𝑥𝑛) = ∏ 𝑢𝑗𝑖𝑗

(𝑥)

𝑛

𝑗=1

  (26) 

where 𝑢𝑗𝑖𝑗
(𝑥) are the different belonging functions which are assumed to be known to 

belong to the fuzzy set of 𝑀
𝑗

𝑖𝑗as represented in figure 12. 

 
Figure 12: Fuzzy system membership functions 

To start the identification methodology, for a set of input/output samples, 

{𝑥1𝑘, 𝑥2𝑘, ⋯ , 𝑥𝑛𝑘, 𝑦𝑘}, the parameters of the fuzzy model can be calculated by minimizing the 

performance index. A practical approach with a low computational cost is based on the 

parameter weighting method. The main objective is to improve the choice of the 

performance index and minimize it. This method is characterized by extending the objective 

function, including a weighting factor K and the norm of the vector P (Jiménez, Al-Hadithi, 

& Matía, 2008). 

                𝐽 = ∑(𝑦𝑘 − �̂�𝑘)2 + 𝐾 ∑ 𝑃𝑗
2

𝑗

𝑚

𝑘=1

= ‖𝑌 − 𝑋𝑃‖2 + 𝐾‖𝑃‖2                                           (27) 

Where: 

              𝑌 = [𝑦1  𝑦2   ⋯  𝑦𝑚]𝑡 

           𝑃 = [𝑃0
(1⋯1)

  𝑃1
(1⋯1)

  𝑃2
(1⋯1)

 ⋯  𝑃𝑛
(1⋯1)

 ⋯  𝑃0
(𝑟1⋯ 𝑟𝑛)

⋯ 𝑃𝑛
(𝑟1⋯ 𝑟𝑛)

]
𝑡

                      

          𝑋 = [
𝛽1

(1⋯1)
  𝛽1

(1⋯1)
𝑥11  ⋯ 𝛽1

(1⋯1)
𝑥𝑛1 …  𝛽1

(𝑟1⋯ 𝑟𝑛)
 ⋯ 𝛽1

(𝑟1⋯ 𝑟𝑛)
𝑥𝑛1

⋮

 𝛽𝑚
(1⋯1)

  𝛽𝑚
(1⋯1)

𝑥1𝑚  ⋯ 𝛽𝑚
(1⋯1)

𝑥𝑛𝑚 … 𝛽𝑚
(𝑟1⋯ 𝑟𝑛)

 ⋯ 𝛽𝑚
(𝑟1⋯ 𝑟𝑛)

𝑥𝑛𝑚

]               

And, 

               βk
(i1…in)

=
w(i1…in)(xk)

∑ …
r1
i1=1

∑ w(i1…in)(xk)
rn
in=1

      

Equation 27 can be written as follows: 

                𝐽 = (𝑌 − 𝑋𝑃)𝑡(𝑌 − 𝑋𝑃) + 𝑃𝑡𝐾𝑃 (28) 

Applying the gradient operator and setting the equation to zero to minimize we obtain: 
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𝛻𝐽 = −2(𝑌 − 𝑋𝑃)𝑡 + 2𝑃𝑡𝐾𝑃 = 0 

                                           −XtY + (XtX + K)P = 0 

Thus, the parameters of the fuzzy model are given by: 

                𝑃 = (𝑋𝑡𝑋 + 𝐾)−1𝑋𝑡𝑌 (29) 

where K is a diagonal matrix that must necessarily have nonzero values to guarantee that 

the term 𝑋𝑡𝑋 + 𝐾 is invertible. 

4.3. Fuzzy PID Control 

Process control plays an essential role in the safe manufacture of quality products; 

while there are several methods available to regulate this process, PID controllers have 

carried significant responsibilities due to its simplicity and reliability (Greg, 2000), however, 

being the PID is a linear controller is not well suited for strongly nonlinear systems (Yesil, 

Guzelkaya, & Eksin, 2003), for this reason, in the presence of complex nonlinearities and 

high uncertainties a fuzzy controller has emerged as a powerful tool to deal with such 

complex systems (Siddique, 2014).  

In the work of (Mizumoto, 1995), the realization of the Fuzzy PID is presented; however, is 

the work of (Jantzen, 1998) that provides not only the structure of the Fuzzy PID controller 

but also a methodology to tune the aforementioned controller, which is used on this work 

with minor modification, and is presented as follows: 

a) Tune the PID controller (any method) 

b) Replace it with an equivalent linear fuzzy controller 

c) Make the fuzzy controller nonlinear 

As seen previously, the first step requires a classical PID controller tuned with any method 

(Ziegler Nichols, for example), providing the gains Kp, Ti, and Td of the controller. 

The second step requires replacing the PID controller with the equivalent fuzzy controllers; 

this means, transform: 









++=  dt

tde
Tddtte
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)(
)(

1
)()(  (30) 

Into the following structure (Figure 12): 

 
Figure 12: Fuzzy PID controller 

Where: 
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In case of being expressed with Kp, Ki y Kd: 

 

(31) 

UIEUCEUE GGKiGKdGGKp ===                G               (32) 

To perform the replacement of the PID controller with the previous structure, certain 

considerations must be taken into account: 

- Universe of Discourse:  The universe of discourse for inputs and outputs must be 

large enough to maintain the variables (error and control signals) between the 

boundaries (without saturation). Each input/output family must contain several 

terms, such as the sum of membership functions is 1 for each input/output. 

- Membership functions: Preferably use triangular membership functions that cross 

on =0.5. 

- The number of rules: The number of terms on each family determines the number 

of rules, an AND connector is recommended combined with all terms to assure the 

completeness of the system, a rule of thumb to determine the number of rules that 

guarantees completeness is presented as follows: 

( ) Inputs
FunctionsMembershipRules

#
 ## =  (33) 

- Defuzzification method: Use the Centroid of Area (COA) method for 

defuzzification. 

The final step requires to make the fuzzy controller nonlinear; in practice, a rule-based from 

terms like Positive Error, Negative Error, and Zero Error are commonly used as input family 

may consist of these terms, using (4) is possible to note that many applications only require 

nine rules of inference, specific rules could be omitted to modify the control surface (Jantzen, 

1998). The shape of the rules are modified by replacing the triangular membership functions 

with Gaussian o Gbell type membership functions, also modifying GU, GIE, GE, and GCE, 

as various ways to reach the nonlinearity of this controller, but all this is done by 

experimentation adjusted to satisfy specific performance criteria 

4.4. PID with Fuzzy Gain Scheduling 

As stated previously, PID control is the most widely used control algorithm in the 

process industry; if specific performance criteria require dealing with strong nonlinearities, 

a Fuzzy PID is ideal for this application; however, if the traditional PID is combined with 

fuzzy systems into Gain Scheduling approach, the previously presented limitations of this 

controller could be overcome. 

The first approach for Fuzzy Gain Scheduled PID was found by the authors of this work 

(Zhao, Tomizuka, & Isaka, 1993). The algorithm has been maintained through time 

practically with slight changes as found on Lisauskas & Rinkeviciene (2011), Bedoud, Ali-

rachedi, Bahi, & Lakel (2015), and Qin, Sun, Hua, & Liu (2018). 

The algorithm used in this paper is stated as follows: Consider a nonlinear plant regulated 

with a PID controller as presented on (1) with a prescribed universe of discourse for the 
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error and error derivative signals  maxmin )(;)()( tetete   and  maxmin )(;)()( tetete    

respectively, it is assumed that Kp, Ki, and Kd are in prescribed ranges; this is,  

 maxmin ;KpKpKp ,  maxmin ; KiKiKi and   maxmin ; KdKdKd  . Then, by using a Mamdani 

FIS, the parameters are determined by the following set of fuzzy rules: 

Rule i=1,2,…..m 

If Ate 1)( →  and Bte 1)( →  then KpKp →  and KdKd →  and KiKi →  

Where (.)  is the membership functions used to describe the fuzzy inference systems. For 

instance, considers a set of triangular membership functions used to describe this system, a 

typical gain scheduler could be seen as follows (Figures 13,14,15): 

 

Figure 13: Input Fuzzy membership functions for )( and )( tete   

 

Figure 14: Output Fuzzy membership functions for KdKi  and  

 

Figure 15: Output Fuzzy membership functions for Kp  
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The defuzzification leads to the following: 
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The gains obtained on equation (5) are used in the calculation of the following normalized 

gains: 

( )

( )

( ) minminmax

minminmax

minminmax
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KiKiKiKiKi
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 (35) 

Finally, the block diagram of the PID with a Fuzzy gain scheduler can be seen in figure 16. 

 
Figure 16: PID with Fuzzy Gain Scheduler 

4.5. Fuzzy Adaptive MPC 

A fuzzy adaptive model predictive control built on discrete-time is presented in this 

section; this approach was presented on (Aboukheir, Herrera, Chavez, Leica, & Camacho,  

2020), firstly considers a nonlinear system with time delay and measured disturbances: 

 )(),(),()( tdttutxftx o−=  (36) 

A persistent exciting input is introduced into the system in equation (36) to obtain a sufficient 

informative experiment for data modeling (Ljung 1999), assuming a sampling period T the 

following set of data )(kT  is obtained: 
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The Takagi Sugeno Model, including measurable disturbances, is the interpolator between 

linear ARMAX functions and ip the i-th memberships functions, presented as: 

Rule pi 2,1=  If  
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The defuzzified output )(~ kTy  with ip((kT)) containing the information of all regressors, 

and  i the firing degree of th i-th rule: 
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Once the model is defined according to equation (38), the next step is the calculation of the 

corresponding predictive control law,  

Definition #1: The cost function to be minimized by the predictive control law applied to the 

system presented equation (38) is defined as:  

    )()()()(~)()(~

0

kTukTukTrjkTykTrjkTyJ T
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j

T
+−+−+=

=

 (39) 

Where r(kT) )(~ kTy   and u(kT) are the setpoint signal, the estimated output, and the control 

signal, respectively; finally, Hp is the prediction horizon. The control signal u(kT) is used 

instead of the classical MPC u(kT) used in (Wang, 2009) as part of the modification proposed 

for the control algorithm. 

The first step on each control cycle is the prediction step, From j=1…Hp with Hp the 

Prediction Horizon, the proposed prediction vector on is built as follows: 
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(40) 

This could be seen in graphic form in figure 17 for the generalized case as:  

 
Figure 17: Fuzzy Hp-Steps Predictor 

The prediction presented on equation (33) must be calculated for each sampling period, with 

the information provided by the fuzzy model on equation (31). This provides enough 

information for the Fuzzy MPC to guarantee a stabilizing control law overall operating 

regions. 
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With the information provided by the Hp Steps Predictor, the final step is the minimizations 

of equation (32); for this reason, consider the following theorem: 

Theorem #1: The control law )(ˆ kTu  that minimizes the cost function presented on equation 

(32) with the nonlinear system represented in equation (31) and predictions calculated 

according to equation (33) can be found by minimizing: 

    )(ˆ)(ˆ)()(~)()(~
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With 
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Where ( ) ( )( )( ))()( kTwwwkTW iiii  =  used for prediction as presented in (33) and )(~ kTu

the control signal. Being a system under disturbances and time delay, a modification of 

equation (34) is used; this is, an adaptive penalization of the reference )(kT  which is a 

function dependent on the disturbance above. 

The proposed controller could be visualized in Figure 18. 

 
Figure 18: Fuzzy Adaptive MPC 

5. Applications 

The mixing process presented in (Camacho & Smith, 2000) is used as a benchmark 

system to illustrate the design process of the previously presented controllers. Firstly, a hot 

water stream F1(t) (used as m(t) as control signal) is manipulated to mix with a cold-water 

stream F2(t) to obtain an output flow F4(t) at the desired temperature T4(t). The temperature 

transmitter is located at a distance L from the mixing tank bottom. This highly nonlinear 

system has the main characteristic of a variable time delay dependent on the fluctuations of 

F1(t) and F2(t); this process is shown in figure 19. 
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Figure 19: Mixing tank  

An equilibrium point must be selected to build a linear model; in this case, a First Order plus 

Dead time model or FOPDT for short. Consider, for instance, an equilibrium point 

m(t)=0.478, a disturbance signal of 15% of the value of the equilibrium point m(t)=0.0717 is 

introduced, a set of FOPDT models are built, but the following model when W1(t)=125lbs/min 

is selected as the worst-case scenario (most significant disturbance): 

se
s

sG 35.3

1372.2

474.80
)( −

+

−
=  (43) 

The desired setpoint is T4(t)=150 F; a PID controller is designed for the model presented 

on equation (36), one possible configuration is presented as follows: 

)()()()( sKdsese
s

Ki
sKpesU ++=  (44) 

With: 

000043663.0

00043663.0

002357802.0

−=

−=

−=

Kd

Ki

Kp

 (45) 

With this in mind, the previously presented controllers are designed as follows: 

Fuzzy PID Controller 

In this section, a Fuzzy PID controller is built following the previously presented 

steps; the first step defines the universe of discourse of  )(),( tete   and u(t). Figures 20 and 21 

illustrate the selected universe of discourse and the membership functions used; in this case, 

gbell mf are selected for this purpose 

 

Figure 20:  Input Universe of Discourse for )(),( tete   
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Figure 21: Output Universe of Discourse for u(t) 

The next step is to transfer and upgrade the gains of the PID controller into the Fuzzy PID; 

as a rule of thumb, when using equation (25), it's possible to select the gain GU=-0.0001 this 

leads to: 

44.0

4.2

76.23

=

=

=

CE

IE

E

G

G

G

 (46) 

With the selected gains, the inference rules are built, following equation (26) this leads to 9 

rules which are presented as follows in table 2: 

Table 2: Inference Rules of Fuzzy PID 

e(t) Connector )(te  Conector u(t) 

Low And Low Then High 

Low And Medium Then High 

Low And High Then High 

Medium And Low Then Medium 

Medium And Medium Then Medium 

Medium And High Then Medium 

High And Low Then Low 

High And Medium Then Low 

High And High Then Low 

Figure 22 shows the performance of the closed-loop system with the Fuzzy PID against the 

PID controller. 

 
                                     (a)                                                                            (b) 

Figure 22: (a) Output of the system with (Red) PID (Blue) Fuzzy PID (b) Control Signal with (Red) PID (Blue) Fuzzy PID 

As seen in figure 22, the fuzzy PID provides a softer response against the classical PID, both 

controllers perform well, if the control loop requires a softer response due to actuators 

restrictions, a fuzzy PID could satisfy this additional performance criterion of the systems  



Novasinergia 2021, 4(2), 06-37                                                                                                                                                           30 

 

PID with Fuzzy Gain Scheduling 

This section describes the procedure to build a PID with a fuzzy gain scheduler; the 

first step requires describing the universe of discourse for the inputs )(),( tete   and the 

outputs Kp, Ki, Kd. For the inputs, the Universe of Discourse previously presented is used 

in this case; however, the Universe of Discourse for the outputs must be described according 

to the desired performance criteria of the controller, in this case, a Reset Control approach 

(Barreiro & Baños, 2015) and (Bedoud et al., 2015). The reset control principle consists of 

resetting the integral (and derivative in this case) to zero every time the inputs (The error 

signals) cross to zero. The desired performance of the gain scheduler is established as 

follows: 

( )






=→=

++=→

)()(0)(

)()(0)(

sKpesuse

seKds
s

KiKpsuse
 (47) 

The membership functions are shown on the following figures with its correspondent 

Universe of Discourse (Figures 23 and 24). 

 

Figure 23: Input Universe of Discourse for )(),( tete   

 
Figure 24: Output universe of discourse for (a) Kp (b) Ki (c) Kd. 

The set of rules are presented as follows in table 3: 

Table 3: Inference Rules of Fuzzy Gain Scheduler 

e(t) Connector )(te  Connector Kp Connector Ki Connector Kd 

Low And Low Then High And High And High 

Medium And Medium Then High And Low And Low 

High And High Then High And High And High 

Finally, the performance of the closed-loop system with PID and PID with fuzzy gain 

scheduling is shown as upgrading the value of Ki=0.0014 (Figure 25). 
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Figure 25: (a) Output of the system with (Red) PID (Blue) Fuzzy Gain Scheduled PID (b) Control Signal with (Red) PID 

(Blue) Fuzzy Gain Scheduled PID 

As seen in the previous figures, the fuzzy Gain Scheduled PID recovers faster than the 

classical PID; however, when it is close to the setpoint, it reduces the effect of the integrator 

and derivation, providing a smoother approach to the reference; this type of controller is 

beneficial to avoid the windup effect that could appear on the classical PID controller. 

Fuzzy Adaptive MPC 

The FOPDT presented on (36) is no longer used on this part; instead of that, as stated 

in (Aboukheir et al., 2020), an experiment in the open-loop must be performed to obtain the 

input/output data to build the TS model presented on (31); first consider the Universe of 

Discourse  [m(kT); W1(kT); T4(kT)] UD with m(kT)[0,1]; W1(kT)[100,250]  and T4(kT) 

[118.6,154.9] with sampling period T=0.01 s, the following figures are obtained (Figure 26). 

 
(a) 

 
(b) 

 
(c) 

Figure 26: (a) Open Loop Output Signal T4(kT). (b) Open Loop Input Signal m(kT). (c)Measured Disturbance W1(kT) 

According to (Aboukheir, 2010), a Fuzzy Takagi Sugeno first-order model under measured 

disturbances is selected; the proposed model is presented as follows: 
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   )();();1()()(
~

144 kTWkTmkTTwkTwkTT ii −==   (48) 

With na=1 and nb=nd=nk=0. 

Using the sub clustering method (Abonyi, 2003) and gaussian type membership functions 

(Figure 27), the proposed model in equation (41) approximates the measured output with an 

MSE < 10-6.  Table 5 shows the rules used for this model: 

 
(a) 

 
(b) 

 
(c) 

Figure 27: (a) T4(kT-1) Memberships functions iT4. (b) m(kT) Memberships functions im.  (c) W1(kT)  Memberships 

functions iW1 

Table 5: Inference Rules of Fuzzy MPC 

T4(kT-1 Conector m(kT) Conector W1(kT)    )(
~

4 kTT  

1 And 1 And 1 Then 1 

2 And 2 And 2 Then 2 

3 And 3 And 3 Then 3 

4 And 4 And 4 Then 4 

5 And 5 And 5 Then 5 

6 And 6 And 6 Then 6 

With this model in mind, the predictor is built according to equation (33) and, by selecting 

the penalization function )(001912.0)( 1 kTWkT = , the following response against disturbance 

of the MPC controller is presented as follows: 
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(a)                                                             (b) 

Figure 28: (a) Measured Output of the plant with Fuzzy MPC  (b) Measured Disturbance W1(t) 

As seen in Figure 28a, the system follows the reference with great precision, rejecting the 

disturbance whenever they appear, as presented in Figure 28b. 

6. Discussion 

Each controller previously presented satisfy specific performance criteria; the 

effectiveness of each one relies on the specific requirements of the process and hardware 

available. For example, in the benchmark process previously presented, the Fuzzy MPC 

provides better disturbance rejection with practically no overshoot. However, some 

equipment installed on plant floors cannot handle this algorithm and must rely on the Fuzzy 

PID or the Fuzzy Gain scheduling. Which also provides good results respecting disturbance 

rejection and smoother control laws with less computation effort.  

Finally, it is possible to conclude that a complete analysis of the process and a precise 

specification of its requirements, taking into account the restrictions presented (hardware, 

software, etc.) is the primary key for selecting the adequate control algorithm. 

7. Conclusions 

Fuzzy logic is a highly versatile artificial intelligence technique. It can be used 

successfully to model complex industrial processes and perform automatic control of them. 

The handling of this technique is very intuitive and can be learned very quickly. The process 

control applications in this article highlight the robustness of this technique. And how well 

it can be combined with other control techniques to achieve more stable and robust control 

systems than the originals. 

The future of fuzzy logic in the field of process control is quite promising. Every day, new 

applications are reported in the literature, and new developments are seen that could be 

used daily by the industrial sector in the short term. 
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