Novasinergia 2021, 4(2), 06-37 36
Jiang, B., Gao, Z., Shi, P., & Xu, Y. (2010). Adaptive fault-tolerant tracking control of near-space
vehicle using Takagi–Sugeno fuzzy models. IEEE Transactions on Fuzzy Systems, 18(5), 1000-
1007. https://dx.doi.org/10.1109/tfuzz.2010.2058808
Jiménez, A., Al-Hadithi, B. M., & Matía, F. (2008). An optimal TS model for the estimation and
identification of nonlinear functions. WSEAS Transactions on Systems and Control, 3(10), 897-
906. Retrieved from http://www.wseas.us/e-library/transactions/control/2008/28-596.pdf
Kavsek-Biasizzo, K., Skrjanc, I., & Matko, D. (1997). Fuzzy predictive control of highly nonlinear pH
process. Computers Chem. Eng, 21, S613–S618. Retrieved from http://msc.fe.uni-
lj.si/Papers/CCE_Kavsek1997.pdf
Klug, M., Castelan, E. B., Leite, V. J. S., & Silva, L. F. P. (2015). Fuzzy dynamic output feedback
control through nonlinear Takagi–Sugeno models. Fuzzy Sets and Systems, 263(C), 92-111.
https://doi.org/10.1016/j.fss.2014.05.019
Liu, F., Heiner, M., & Yang, M. (2016). Fuzzy stochastic Petri Nets for modeling biological systems
with uncertain kinetic parameters. PLOS ONE, 11(2).
https://doi.org/10.1371/JOURNAL.PONE.0149674
Lisauskas, S., & Rinkeviciene, R. (2011). Fuzzy adaptive PID control design. Retrieved from
http://azadproject.ir/wp-content/uploads/2013/07/Fuzzy-adaptive-PID-control.pdf
Ljung, L (1999). System Identification: Theory for the user (2nd ed.). Prentice Hall PTR, Upper Saddle
River. https://doi.org/10.1002/047134608X.W1046
Lu, Y-S. , Chen, J. (1994). A self-organizing fuzzy sliding mode controller design for a class of
nonlinear servo systems. IEEE Transactions on Industrial Electronics, 41, 492–502.
https:/doi.org/10.1109/41.315267
Meda-Campana, J. A., Gómez-Mancilla, J. C., & Castillo-Toledo, B. (2011). Exact output regulation
for nonlinear systems described by Takagi–Sugeno fuzzy models. IEEE Transactions on Fuzzy
Systems, 20(2), 235-247. https://doi.org/10.1109/TFUZZ.2011.2172689
Mehra, R. K., Rouhani, R., Eterno, J., Richalet, J. & Rault, A. (1982). Model algorithmic control:
Review and recent developments. Engineering Foundation Conference on Chemical Process
Control II, 287–310.
Meier, R., Nieuwland, J., Hacisalihzade, S. S., & Zbinden, A. M. (1992). Fuzzy logic control of blood
pressure during anesthesia. IEEE Control Systems, 12(6), 12–17.
https://doi.org/10.1109/37.168811
Melin, P., & Castillo, O. (2007). An intelligent hybrid approach for industrial quality control
combining neural networks, fuzzy logic and fractal theory. Information Sciences, 177(7), 1543–
1557. https://doi.org/10.1016/J.INS.2006.07.022
Menzl, S., Stuhler, M., & Benz, R. (1996). A self adaptive computer-based pH measurement and
fuzzy-control system. Water Research, 30(4), 981–991. https://doi.org/10.1016/0043-
1354(95)00249-9
Mizumoto, M (1995). Realization of PID controls by fuzzy control methods. Fuzzy Sets and Systems.
70(2-3). 171-182. https://doi.org/10.1016/0165-0114(94)00215-S
Modi, K. P., Sahin, F., & Saber, E. (2005). An application of human robot interaction: Development
of a ping-pong playing robotic arm. Proceedings of IEEE International Conference on Systems,
Man and Cybernetics, 2, 1831–1836. https://doi.org/10.1109/ICSMC.2005.1571413