
 

Novasinergia 2022 5(1), 06-16. https://doi.org/10.37135/ns.01.09.01                                                      http://novasinergia.unach.edu.ec 

Research article 

Approximate controllability of non-instantaneous impulsive semilinear time-

dependent control systems with unbounded delay and non-local condition  

Controlabilidad aproximada de sistemas de control semilineales no autónomos con 

impulsos no instantáneos, retardo no acotado y condiciones no locales 

Katherine García , Hugo Leiva * 

School of Mathematical and Computational Sciences, Department of Mathematics, University Yachay Tech, Imbabura, Ecuador, 00119; 

katherine.garciap@yachaytech.edu.ec 

*Correspondencia: hleiva@yachaytech.edu.ec 

Citación: Garcia, K., & Leiva, H., 

(2022). Approximate Controllability 

of Non-Instantaneous Impulsive 

Semilinear Time-Dependent Control 

Systems with Unbounded Delay and 

Non-Local Condition. Novasinergia. 

4(5). 06-16.  

https://doi.org/10.37135/ns.01.09.01 

 

 

Recibido: 07 diciembre 2021 

Aceptado: 29 enero 2022 

Publicado: 31 enero 2022 

 

 

Novasinergia 

ISSN: 2631-2654 

 

 
 

Abstract: In this work, we study the approximate controllability of a 

control system with unbounded delay, non-instantaneous impulse, and 

non-local conditions. These results prove once again that the 

controllability of a linear system is preserved if we consider the impulses, 

the non-local conditions and the delays as disturbances of it, which is very 

natural in real life problems, never the critical points of a differential 

equation is exactly the critical point of the model that it represents, the 

same happens with the impulses, the delay and non-local conditions; they 

are intrinsic phenomena to the real problem, that many times they are not 

taken into account at the moment of carrying out the mathematical 

modeling. To achieve our result, we will use a technique developed by A. 

Bashirov et al., which does not use fixed point theorems. On the other 

hand, as the delay is infinite, we consider a phase space that satisfies the 

axiomatic theory propose by Hale-Kato to study retarded differential 

equations with unbounded delay. 
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Resumen:  En este trabajo estudiamos la controlabilidad aproximada de un 

sistema de control con retardo no acotado, impulso no instantáneo y condiciones 

no locales. Estos resultados prueban una vez más que la controlabilidad de un 

sistema lineal se preserva si consideramos los impulsos, las condiciones no locales 

y los retardos como perturbaciones del mismo, lo cual es muy natural en los 

problemas de la vida real, nunca los puntos críticos de una ecuación diferencial 

corresponden exactamente el punto crítico del modelo que representa, lo mismo 

ocurre con los impulsos, el retardo y las condiciones no locales; son fenómenos 

intrínsecos al problema real, que muchas veces no son tomados en cuenta al 

momento de realizar la modelación matemática. Para lograr nuestro resultado, 

utilizaremos una técnica desarrollada por A. Bashirov et al., que no utiliza 

teoremas de punto fijo. Por otro lado, como el retardo es infinito, consideramos 

un espacio de fase que satisface la teoría axiomática propuesta por Hale-Kato para 

estudiar ecuaciones diferenciales retardadas con retardo no acotado. 
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1. Introduction 

In this work, we study the approximate controllability of the following system with 

unbounded delay, non-instantaneous impulse, and non-local condition. To achieve our result 

we will use a technique developed by A. Bashirov et al. (Bashirov & Ghahramanlou, 2014; 

Bashirov & Jneid, 2013; Bashirov, Mahmudov, Şemi, & Etikan, 2007), which does not use fixed 

point theorems as many researchers do. On the other hand, as the delay is infinite, we consider 

a phase space that satisfies the axiomatic theory propose by Hale-Kato to study retarded 

differential equations with unbounded delay (Hale & Kato, 1978; Hino, Murakami, & Naito, 

2013). These results prove once again that the controllability of a linear system is preserved if 

we consider the impulses, the non-local conditions and the delays as disturbances of it, which 

is very natural in real life problems, never the critical points of a differential equation is exactly 

the critical point of the model that it represents, the same happens with the impulses, the delay 

and non-local conditions; they are intrinsic phenomena to the real problem, that many times 

they are not taken into account at the moment of carrying out the mathematical modeling: 

(1.1) {

𝑧′(𝑡) = 𝒜(𝑡)𝑧(𝑡) + ℬ(𝑡)𝑢(𝑡) + 𝑓(𝑡, 𝑧𝑡, 𝑢(𝑡)), 𝑡 ∈ 𝐼𝑘, 𝑘 = 0,1,2, … , 𝑝

 𝑧(𝑠) +  𝒦 (𝑧𝜋1 , 𝑧𝜋2 , ⋯ , 𝑧𝜋𝑞) (𝑠) = 𝜙(𝑠), 𝑠 ∈ ℝ− = (−∞,0],

𝑧(𝑡) =  𝒢𝑘(𝑡, 𝑧(𝑡𝑘
−)), 𝑡 ∈ 𝐽𝑘, 𝑘 = 1,2,⋯ , 𝑝

 

where 𝐼0 = [0, 𝑡1], 𝐼𝑘 = (𝑠𝑘 , 𝑡𝑘+1], 𝐽𝑘 = (𝑡𝑘 , 𝑠𝑘], 0 = 𝑠0 < 𝑡1 < 𝑠1 < 𝑡2 < 𝑠2 < ⋯ < 𝑠𝑝 < 𝑡𝑝+1 = 𝜏. 

There exists a fixed number 𝛱 > 0 such that 𝜋𝑞 ≤ min{𝜋, 𝜏}, where [0, 𝜏) is the maximal interval 

of local existence of solutions of problem (1.1); and 0 ≤ 𝜋1 < 𝜋2 < ⋯ < 𝜋𝑞, 𝑖 = 1,… , 𝑞, selected 

under specific rules marked by the real-life problem that the mathematical model could 

represent, such as: 𝜋𝑖 =
𝑖𝜋𝑞

𝑝
 , 𝑖 = 1, … , 𝑞. The advantage of using non-local conditions is that 

measurements at more places can be incorporated to get better models. For more details and 

physical interpretations see Byszewski & Lakshmikantham (1991), Byszewski (1990), 

Byszewski (1991),  Chabrowski (1984), Vrabie (2015), and references therein. 𝒦:𝔎𝑞 → 𝔎, 

𝜙:ℝ− → ℝ𝑛, 𝜙 ∈ 𝔎, 𝔎 is the phase space to be specified later. 𝑓:ℝ+ × 𝔎 ×ℝ
𝑚 → ℝ𝑛, is a 

smooth enough function, 𝒢𝑘: 𝐽𝑘 × ℝ
𝑛 → ℝ𝑛, 𝑘 = 1,2,3,⋯ , 𝑝, are continuous and represents the 

impulsive effect in the system (1.1), i.e., we are considering that the system can have abrupt 

changes that stay there for an interval of time. These alterations in state might be due to certain 

external factors, which cannot be well described by pure ordinary differential equations, (see, 

for instance, Lakshmikantham, Bainov, & Simeonov (1989) and Selvi & Arjunan (2012) and 

reference therein). 𝒜(𝑡) ∈ ℝ𝑛×𝑛, ℬ(𝑡) ∈ ℝ𝑛×𝑚 and 𝜙 ∈ 𝔎, where 𝔎 is the phase space that will 

be defined later (see section 2). For this type of problems the phase space for initial functions 

plays an important role in the study of both qualitative and quantitative theory, for more 

details, in case without impulses and non-local conditions, we refer to Hale & Kato (1978), Hino 

et al. (2013) and Shin (1987, 1987). The function 𝑧𝑡(𝜃) = 𝑧(𝑡 + 𝜃) for 𝜃 ∈ (−∞, 0] illustrate the 
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history of the state up to the time 𝑡, and also remembers much of the historical past of 𝜙, 

carrying part of the present to the past. 

Additionally, we assume the following conditions on the nonlinear term 𝑓 

(1.2) |𝑓(𝑡, 𝜑, 𝑢)| ≤ 𝜁(∥ 𝜑(−𝑠𝑝) ∥),     𝑢 ∈ ℝ
𝑚, 𝜑 ∈ 𝔎, 

where 𝜁:ℝ+ → [0,∞) is a continuous function. In particular, 𝜁(𝜉) = 𝑎(𝜉)𝛽 + 𝑏, with 𝛽 ≥ 1. 

Associated with the semilinear system (1.1), we also consider the linear system 

(1.3) {
𝑧′(𝑡) = 𝒜(𝑡)𝑧(𝑡) + ℬ(𝑡)𝑢(𝑡), 𝑡 ∈ (𝑡0, 𝜏],

𝑧(𝑡0) = 𝑧
0.

 

Also, we shall assume the following hypothesis: 

H1) The linear control system (1.3) is exactly controllable on any interval [𝜏 − 𝛿, 𝜏], for all 𝛿 with 

0 < 𝛿 < 𝜏. 

The hypothesis H1) is satisfied in the case that 𝒜(𝑡) = 𝐴 and ℬ(𝑡) = 𝐵 are constant matrices 

since the algebraic Kalman's condition (Lee & Markus, 1986) for exact controllability of linear 

autonomous systems do not depend on the time interval. 

Rank[𝐵|𝐴𝐵|⋯ |𝐴𝑛−1𝐵] = 𝑛. 

Other examples of time-dependent systems satisfying the hypothesis H1) can be found in Leiva 

& Zambrano (1999). In addition, there are several papers on the existence of solutions of 

semilinear evolution equations with impulses, with impulses and bounded delay, with 

bounded delay and non-local condition, and with non-local conditions and impulses. To 

mention, one can see Selvi & Arjunan, (2012). Recently, in Abbas, Arifi, Benchohra, & Graef 

(2020), the existence of periodic mild solution of infinite delay evolution equations with non-

instantaneous impulses has been studied by using Koratowski's measure of non-compactness 

and Sadowski's fixed point theorem. In recently work Ayala-Bolagay, Leiva, & Tallana-

Chimarro (2020), using some ideas from the preceding paper and Hale & Kato (1978), Liu 

(2000), Liu, Naito, & Van Minh (2003), to define a particular phase space 𝔎 satisfying Hale-Kato 

axiomatic theory, the existence of solutions for this type of systems has been proved applying 

Karakosta's fixed point theorem, which is an extension of Krasnosel'skii's Fixed Point Theorem 

for contraction and compact mappings, as in Karakostas (2003), Leiva & Sundar (2017). But, as 

far as we know, this system's controllability has not been studied before. 

2. Preliminaries 

This section is dedicated mainly to select the appropriate phase space 𝔎 to set this 

problem, which must satisfy the axiomatic theory proposed by Hale and Kato to study 

differential equations with infinite delay; that on the one hand, on the other hand, we will give 

a formula for the solutions of the problem posed through the evolution operator or transition 
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matrix corresponding to the associated linear system. To this end, we denote by 𝛷 the 

fundamental matrix of the linear system 

(2.4) 𝑧′(𝑡) = 𝒜(𝑡)𝑧(𝑡), 𝑡 ∈ ℝ 

i.e., {
𝑑𝛷(𝑡)

𝑑𝑡
= 𝒜(𝑡)𝛷(𝑡),

𝛷(0) = 𝐼,
 

then the evolution operator 𝒰(𝑡, 𝑠) is defined by 𝒰(𝑡, 𝑠) = 𝛷(𝑡)𝛷−1(𝑠), 𝑡, 𝑠 ∈ ℝ. For 𝜏 > 0, we 

consider the following bound for the evolution operator 

𝑀 = sup
𝑡,𝑠∈(0,𝜏]

∥ 𝒰(𝑡, 𝑠) ∥. 

Now, we shall define the space of normalized piecewise continuous function, denoted by 

𝒫𝒲 = 𝒫𝒲((−∞, 0]; ℝ𝑛), as the set of functions such that their restriction to any interval of the 

form [𝑎, 0] is a piecewise continuous function. i.e., 

𝒫𝒲 = {𝜑:  (−∞, 0] → ℝ𝑛: . 𝜑|[𝑎,0]is a piecewise continuous function, ∀𝑎 < 0} 

Using some ideas from Liu (2000), we consider a function ℎ:ℝ → ℝ+ such that 

1. ℎ(0) = 1, 

2. ℎ(−∞) = +∞, 

3. ℎ is decreasing. 

Remark 2.1.  A particular function ℎ is ℎ(𝑠) = exp(−𝑎𝑠) with 𝑎 > 0. 

Now, we define the following functions space 

𝐶ℎ = {𝑧 ∈ 𝒫𝒲: sup
𝑠≤0

∥ 𝑧(𝑠) ∥

ℎ(𝑠)
< ∞}. 

In Abbas et al. (2020), Hale & Kato (1978), Liu (2000), Liu et al. (2003), and other references it is 

mentioned that this space is a Banach space, which certainly it is true because we did the proof. 

Lemma 2.2. The space 𝐶ℎ endowed with the norm 

∥ 𝑧 ∥ℎ= sup
𝑠≤0

∥ 𝑧(𝑠) ∥

ℎ(𝑠)
, 𝑧 ∈ 𝐶ℎ, 

is a Banach space. 

Our phase space will be 

𝔎≔ 𝐶ℎ, 

equipped with the norm 
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∥ 𝑧 ∥𝔎=∥ 𝑧 ∥ℎ. 

Now, we shall consider the following larger space 

𝒫𝒲ℎ𝜏≔𝒫𝒲ℎ𝜏((−∞, 𝜏]; ℝ
𝑛) for a fixed 𝜏 

𝒫𝒲ℎ𝜏 = {𝑧: (−∞, 𝜏] → ℝ𝑛: . 𝑧|ℝ− ∈ 𝔎 and . 𝑧|(0,𝜏] is a continuous except at 𝑡𝑘,

𝑘 = 1,2, … , 𝑝,  where side limits 𝑧(𝑡𝑘
+), 𝑧(𝑡𝑘

−) exist and 𝑧(𝑡𝑘
+) = 𝑧(𝑡𝑘)}.

 

From Lemma 2.2, we have the following, 

Lemma 2.3.  𝒫𝒲ℎ𝜏 is a Banach space endowed with the norm ∥𝑧∥ = ∥∥𝑧|ℝ−∥∥𝔎 + ∥
∥𝑧|𝐼∥∥∞ where ∥∥𝑧|𝐼∥∥∞ =

sup
𝑡∈𝐼=(0,𝜏]

∥𝑧(𝑡)∥. 

For more details about it, one can see Abbas et al. (2020), Hale & Kato (1978), Liu (2000), Liu et 

al. (2003). 

Thus, 𝔎 will be a linear space of functions mapping (−∞, 0] into ℝ𝑛 endowed with a norm ∥⋅∥𝔎. 

Now, let us denote by 

(𝔎)𝑞 = 𝔎 × 𝔎 × …× 𝔎 =∏𝔎

𝑞

𝑖=1

, 

i.e., 

𝑧 = (𝑧1, … , 𝑧𝑞)
𝑇
∈ (𝔎)𝑞 

and the norm in the space (𝔎)𝑞 is given by 

∥∥𝑦∥∥𝑞 = √∑∥∥𝑦𝑖∥∥𝔎
2

𝑞

𝑖=1

 

Definition 2.4. (Exact Controllability) The system (1.1) is said to be exactly controllable on 

[0, 𝜏] if for every 𝜙 ∈ 𝔎,  1 nz R there exists 𝑢 ∈ 𝐿2(0, 𝜏; ℝ𝑚) such that the solution 𝑧(𝑡) of (1.1) 

corresponding to 𝑢 verifies: 

𝑧(0) + 𝒦 (𝑧𝜏1 , 𝑧𝜏2 , … , 𝑧𝜏𝑞) (0) = 𝜙(0) and 𝑧(𝜏) = 𝑧1. 

Definition 2.5. (Approximate Controllability) The system (1.1) is said to be approximately 

controllable on [0, 𝜏] if for every 𝜙 ∈ 𝔎, 𝑧1 ∈ 𝐼𝑅𝑛 and 𝜖 > 0, there exists 𝑢 ∈ 𝐿2([0, 𝜏]; ℝ
𝑚) such 

that the solution 𝑧(𝑡) of (1.1) corresponding to 𝑢 verifies: 

𝑧(0) + 𝒦 (𝑧𝜏1 , … , 𝑧𝜏𝑞) (0) = 𝜙(0), and ‖𝑧(𝜏) − 𝑧1‖ℝ𝑛 < 𝜖. 
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3. Controllability of Linear System  

In this section, we shall present some known characterization of the controllability of the 

linear system (3.5) without impulses, delays, and non-local conditions. To this end, we note 

that for all 𝑧0 ∈ 𝐼𝑅𝑛 and 𝑢 ∈ 𝐿2(0, 𝜏; ℝ𝑚) the initial value problem 

(3.5) {
𝑦′ = 𝒜(𝑡)𝑦(𝑡) + ℬ(𝑡)𝑢(𝑡), 𝑦 ∈ ℝ𝑛, 𝑡 ∈ [𝜏 − 𝛿, 𝜏],

𝑦(𝜏 − 𝛿) = 𝑧0,
 

admits only one solution given by 

(3.6) 𝑦(𝑡) = 𝒰(𝑡, 𝜏 − 𝛿)𝑧0 + ∫ 𝒰
𝑡

𝜏−𝛿
(𝑡, 𝑠)ℬ(𝑠)𝑢(𝑠)𝑑𝑠,   𝑡 ∈ [𝜏 − 𝛿, 𝜏], 

Definition 3.1. Corresponding with (3.5), we define the following matrix: The Gramian 

controllability matrix by: 

(3.7) 𝒲𝜏𝛿 = ∫ 𝒰
𝜏

𝜏−𝛿
(𝜏, 𝑠)ℬ(𝑠)ℬ∗(𝑠)𝒰∗(𝜏, 𝑠)𝑑𝑠. 

Proposition 3.1. (See Leiva, Cabada, & Gallo (2020)) The system (3.5) is controllable on [𝜏 − 𝛿, 𝜏] 

if, and only if, the matrix 𝒲𝜏𝛿 is invertible. 

Moreover, a control steering the system (3.5) from initial state 𝑧0 to a final state 𝑧1 on the 

interval [𝜏 − 𝛿, 𝜏] is given by 

(3.8) 𝑣𝛿(𝑡) = 𝐵∗(𝑡)𝒰∗(𝜏, 𝑡)𝒲𝜏𝛿
−1(𝑧1 −𝒰(𝜏, 𝜏 − 𝛿)𝑧0), 𝑡 ∈ [𝜏 − 𝛿, 𝜏]. 

i.e., 

The corresponding solution 𝑦𝛿(𝑡) of the linear system (3.5) satisfies the boundary condition: 

𝑦𝛿(𝜏 − 𝛿) = 𝑧0 and 𝑦𝛿(𝜏) = 𝑧1. 

4. Main Result 

This section is devoted to the main result of the present work, i.e., the approximate 

controllability of the semilinear system in (1.1) with infinite delay, nonlocal conditions and non-

instantaneous impulses. According to Abbas et al. (2020), Ayala-Bolagay et al. (2020) for all 𝜙 ∈

𝔎 and 𝑢 ∈ 𝐿2(0, 𝜏; ℝ𝑚), the problem (1.1) admits only one solution 𝑧 ∈ 𝒫𝒲ℎ𝜏, which is given, 

for 𝑘 = 1,2,⋯ , 𝑝, by 

(4.9)       𝑧(𝑡) =

{
 
 
 
 
 

 
 
 
 
    𝒰(𝑡,0)[𝜙(0)  −𝒦 (𝑧𝜏1, 𝑧𝜏2,… ,𝑧𝜏𝑞) (0)] +∫ 𝒰𝑡0 (𝑡,𝑠)𝑓(𝑠,𝑧𝑠)𝑑𝑠

+∫ 𝒰(𝑡,𝑠)𝑡
0 𝐵(𝑠)𝑢(𝑠)𝑑𝑠, 𝑡 ∈ 𝐼0

𝒰 (𝑡, 𝑠𝑘)𝐺𝑘 (𝑠𝑘, 𝑧(𝑠𝑘
−
))+ ∫ 𝒰𝑡𝑠𝑘

(𝑡,𝑠)𝑓(𝑠,𝑧𝑠)𝑑𝑠

+∫ 𝒰𝑡𝑠𝑘
(𝑡, 𝑠)𝐵(𝑠)𝑢(𝑠)𝑑𝑠, 𝑡 ∈ 𝐼𝑘

𝐺𝑘(𝑡,𝑧(𝑡
−
)) 𝑡 ∈ 𝐽𝑘,

𝜙(𝑡)−𝒦 (𝑧𝜏1, 𝑧𝜏2,… ,𝑧𝜏𝑞) (𝑡), 𝑡 ∈ (−∞,0].
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Theorem 4.1. If the functions 𝑓, 𝒢𝑘 , 𝒦 are smooth enough, condition (1.2) holds, and the linear system 

(3.5) is exactly controllable on any interval [𝜏 − 𝛿, 𝜏], 0 < 𝛿 < 𝜏, then system (1.1) is approximately 

controllable on [0, 𝜏]. 

Proof. Given 𝜙 ∈ 𝔎, a final state 𝑧1 and 𝜖 > 0, we want to find a control 𝑢𝜖 ∈ 𝐿2(0, 𝜏; ℝ𝑚) steering 

the system to a ball of center 𝑧1 and radius 𝜖 > 0 on [0, 𝜏]. Indeed, we consider any fixed control 

𝑢 ∈ 𝐿2(0, 𝜏; ℝ𝑚) and the corresponding solution 𝑧(𝑡) = 𝑧(𝑡, 0, 𝜙, 𝑢) of the problem (1.1). 

For 0 min ,
p

s
MK


 

 
  − 

 
,  we define the control 𝑢𝜖 ∈ 𝐿2(0, 𝜏; ℝ𝑚) as follows 

𝑢𝜖(𝑡) = {
𝑢(𝑡), if 0 ≤ 𝑡 ≤ 𝜏 − 𝛿,

𝑣𝛿(𝑡), if 𝜏 − 𝛿 < 𝑡 ≤ 𝜏.
 

where 𝐾 = sup𝑠∈[0,𝜏]{𝜁(∥ 𝑧(𝑠) ∥} and 

𝑣𝛿(𝑡) = 𝐵∗(𝑡)𝒰∗(𝜏, 𝑡)(𝒲𝜏𝛿)
−1(𝑧1 −𝒰(𝜏, 𝜏 − 𝛿)𝑧(𝜏 − 𝛿)), 𝜏 − 𝛿 < 𝑡 ≤ 𝜏. 

Since 0 < 𝛿 < 𝜏 − 𝑠𝑝, then 𝜏 − 𝛿 > 𝑠𝑝; and using the cocycle property 𝒰(𝑡, 𝑙)𝒰(𝑙, 𝑠) = 𝒰(𝑡, 𝑠), the 

associated solution 𝑧𝛿(𝑡) = 𝑧(𝑡, 0, 𝜙, 𝑢𝜖) of the time-dependent impulsive semilinear retarded 

differential equation with infinite delay and non-local (1.1), at time 𝜏, can be expressed as 

follows: 

𝑧𝛿(𝜏) = 𝒰(𝜏, 𝑠𝑝)𝐺𝑘 (𝑠𝑝, 𝑧
𝛿(𝑠𝑝

−)) + ∫ 𝒰
𝜏

𝑠𝑝

(𝜏, 𝑠)𝑓(𝑠, 𝑧𝑠, 𝑢
𝜖(𝑠))𝑑𝑠 + ∫ 𝒰

𝜏

𝑠𝑝

(𝜏, 𝑠)ℬ(𝑠)𝑢𝜖(𝑠)𝑑𝑠

= 𝒰(𝜏, 𝜏 − 𝛿) {𝒰(𝜏 − 𝛿, 𝑠𝑝)𝐺𝑝 (𝑠𝑝, 𝑧
𝛿(𝑠𝑝

−)) + ∫ 𝒰
𝜏−𝛿

𝑠𝑝

(𝜏 − 𝛿, 𝑠)[ℬ(𝑠)𝑢(𝑠)𝑑𝑠

+𝑓 (𝑠, 𝑧𝑠
𝛿 , 𝑢(𝑠))]𝑑𝑠} + ∫ 𝒰

𝜏

𝜏−𝛿

(𝜏, 𝑠) [ℬ(𝑠)𝑣𝛿(𝑠) + 𝑓 (𝑠, 𝑧𝑠
𝛿 , 𝑣𝛿(𝑠))] 𝑑𝑠

 

Therefore, 

𝑧𝛿(𝜏) = 𝒰(𝜏, 𝜏 − 𝛿)𝑧(𝜏 − 𝛿) +∫ 𝒰
𝜏

𝜏−𝛿

(𝜏, 𝑠) [ℬ(𝑠)𝑣𝛿(𝑠) + 𝑓 (𝑠, 𝑧𝑠
𝛿 , 𝑣𝛿(𝑠))] 𝑑𝑠 

The corresponding solution 𝑦𝛿(𝑡) = 𝑦(𝑡, 𝜏 − 𝛿, 𝑧(𝜏 − 𝛿), 𝑣𝛿) of the initial value problem (3.5) at 

time 𝜏, for the control 𝑣𝛿 and the initial condition 𝑧0 = 𝑧(𝜏 − 𝛿), is given by: 

𝑦𝛿(𝜏) = 𝒰(𝜏, 𝜏 − 𝛿)𝑧(𝜏 − 𝛿) + ∫ 𝒰
𝜏

𝜏−𝛿

(𝜏, 𝑠)ℬ(𝑠)𝑣𝛿(𝑠)𝑑𝑠, 

and from Proposition (3.1), we get that 

𝑦𝛿(𝜏) = 𝑧1. 

Thus, 



Novasinergia 2022, 5(1), 06-16                                                                                                                                                                     13 

(4.10)  ‖𝑧𝛿(𝜏) − 𝑧1)‖ ≤ ∫ ‖𝒰(𝜏, 𝑠)‖
𝜏

𝜏−𝛿
‖𝑓 (𝑠, 𝑧𝑠

𝛿 , 𝑣𝛿(𝑠))‖𝑑𝑠. 

Now, since 0 < 𝛿 < 𝑠𝑝 and 𝜏 − 𝛿 ≤ 𝑠 ≤ 𝜏, then 𝑠 − 𝑠𝑝 ≤ 𝜏 − 𝑠𝑝 < 𝜏 − 𝛿 and 

𝑧𝛿(𝑠 − 𝑠𝑝) = 𝑧(𝑠 − 𝑠𝑝). 

Hence, since 𝛿 satisfies 0 < 𝛿 < min {𝑠𝑝, 𝜏 − 𝑠𝑝,
𝜖

𝑀𝐾
}, from (1.3), we get: 

‖𝑧𝛿(𝜏) − 𝑧1)‖ ≤ ∫ ‖𝒰(𝜏, 𝑠)‖
𝜏

𝜏−𝛿

‖𝑓 (𝑠, 𝑧𝑠, 𝑣
𝛿(𝑠))‖𝑑𝑠

≤ 𝑀∫ 𝜁
𝜏

𝜏−𝛿

(‖𝑧(𝑠 − 𝑠𝑝)‖)𝑑𝑠

𝑀𝐾(𝜏 − 𝜏 + 𝛿) ≤ 𝜖,

 

which completes the proof. 

5. Final Remark 

In this work, we have proved the approximate controllability of a control system 

governed by a retarded differential equation with unbounded delay, non-local conditions and 

non-instantaneous impulses, without the need to use fixed point theorems, only applying a 

technique used by Bashirov & Ghahramanlou (2014),  Bashirov & Jneid (2013), and Bashirov et 

al. (2007). However, to prove exact controllability we can use Rothe's Fixed Point Theorem or a 

new technique that appears in assuming certain conditions in nonlinear terms on the one 

hand,or assuming certain conditions on the other hand in the Gramian matrix; this is part of 

ongoing research. Also, the ideas presented here can be used to study the controllability of 

infinite-dimensional systems in Hilbert spaces where the dynamical is given by the 

infinitesimal generator 𝐴 of a compact semigroup {𝑇(𝑡)}𝑡≥0, in this case we only get 

approximate controllability of the system.  
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