

Novasinergia 2022, 6(1), 95-104. https://doi.org/10.37135/ns.01.11.06 http://novasinergia.unach.edu.ec

Research Article

Implementation and performance evaluation of a library to improve the

communication with Maxon Motor's

Implementación y evaluación de rendimiento de una librería para mejorar la comunicación

con los motores de Maxon

Hernan Morales , Andres Cordova , Ismael Minchala , Fabian Astudillo-Salinas*

Departamento de Eléctrica, Electrónica y Telecomunicaciones, Facultad de Ingeniería, Universidad de Cuenca, Cuenca, Ecuador,

010103; hernan.morales@ucuenca.edu.ec, andresf.cordovac@ucuenca.edu.ec, ismael.minchala@ucuenca.edu.ec.

*Correspondencia: fabian.astudillos@ucuenca.edu.ec

Citación: Morales, H., Cordova, A.,

Minchala, I., & Astudillo-Salinas,

F., (2023). Implementation and

performance evaluation of a

library to improve the

communication with Maxon

Motor's. Novasinergia. 6(1). 95-104.

https://doi.org/10.37135/ns.01.

11.06

Recibido: 09 diciembre 2022

Aceptado: 14 enero 2023

Publicación: 16 enero 2023

Novasinergia

ISSN: 2631-2654

Abstract: The development of robotic devices like exoskeletons

involves using several components, such as actuators and sensors.

These components exchange information with the main device or

between them using a communication system; this allows data transfer

during the device's operation. In addition, a communication system

with good performance is the basis for the correct operation of the

control system. In this context, selecting an appropriate methodology

to meet design specifications during software development is

necessary. This research presents the development of ALLEX CAN

software, so named because it is part of the communication system of

the ALLEX-2 (ALLEX version 2) prototype and uses the Controller

Area Network (CAN) protocol. The system was created using the

SocketCAN library as a base, which provides a range of tools to work

with CAN interfaces. C++ was the programming language selected to

develop this solution for its lower execution time. The performance of

this software is compared with the ready-to-use functions provided by

the manufacturer Maxon Motor. Experimental tests show the superior

performance of our developed software.

 Keywords: CAN protocol, communication system, Maxon Motor,

software.

Copyright: 2023 derechos

otorgados por los autores a

Novasinergia.

Este es un artículo de acceso abierto

distribuido bajo los términos y

condiciones de una licencia de

Creative Commons Attribution

(CC BY NC).

(http://creativecommons.org/licens

es/by/4.0/).

 Resumen: El desarrollo de dispositivos robóticos como los exoesqueletos implica

el uso de varios componentes como actuadores y sensores. Estos componentes

intercambian información con el dispositivo principal o entre ellos mediante un

sistema de comunicación, esto permite la transferencia de datos durante el

funcionamiento del dispositivo. Además, un sistema de comunicación con buen

desempeño es la base para el correcto funcionamiento del sistema de control. En

este contexto, es necesario seleccionar una metodología apropiada para cumplir

con las especificaciones de diseño durante el desarrollo del software. Esta

investigación presenta el desarrollo del software ALLEX (Autonomous Lower

Limb Exoskeleton) CAN (Controller Area Network) software, llamado así

porque forma parte del sistema de comunicación del prototipo ALLEX-2

(ALLEX versión 2) y usa el protocolo CAN. El sistema fue creado usando la

librería SocketCAN por la gran cantidad de herramientas. C++ fue el lenguaje

de programación elegido para el desarrollo de esta solución debido a su bajo

tiempo de ejecución. El desempeño de este software se lo compara con las

funciones proporcionadas por el fabricante Maxon Motor. Las pruebas

experimentales muestran el rendimiento superior del software desarrollado

frente al proporcionado por el fabricante.

 Palabras claves: Protocolo CAN, sistema de comunicación, motor Maxon,

software

http://novasinergia.unach.edu.ec/
https://doi.org/10.37135/ns.01.11.06
https://doi.org/10.37135/ns.01.11.06
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-7781-8543
https://orcid.org/0000-0002-6611-4487
https://orcid.org/0000-0003-0822-0705
https://orcid.org/0000-0001-7644-0270

Novasinergia 2022, 6(1), 95-104 96

1. Introduction

The CAN protocol is widely used in several applications, from industrial, medical, and

robotics (Di Natale et al. 2012; Seoane et al. 2021). The CAN topology is bus-type and provides a

high-speed serial interface of up to 1 Mbit/s. This protocol allows sending information under the

multi-master and peer-to-peer configuration. CAN is a low-layer protocol, so it is generally used

with the CANopen protocol to add higher-layer functions (CAN in Automation (CiA) e. V. 2011).

The popularity of the CAN protocol is mainly because of its: simplicity, reliability, low cost, and

real-time performance (Bosch 1991; Farsi, Ratcliff, and Barbosa 1999).

Currently, some manufacturers provide ready-to-use communications protocols for diverse

applications; for example, Maxon Motor produces high-precision motors, gear heads, and

controllers for different purposes (Maxon 2022) and provides software with different functions for

CAN communication. The ready-to-use software is great for speeding up the development process

and reducing implementation time. However, some applications demand specific requirements

from the control and communications system. In this case, a better approach is to develop the

software according to the application's needs.

Several up-to-date research papers focus on exoskeleton development and use hardware from

Maxon Motors and CAN protocol for communications. The authors of (Lu et al. 2014) developed a

single-leg exoskeleton with four DOFs (Degrees of Freedom). Its joints implement brushless Maxon

DC motors (EC45), while its software uses CAN and CANopen protocols. The authors of (Pan et al.

2018) present an exoskeleton for lower limbs with four joints: hip and knee. This device uses Maxon

motors and, through CAN, communicates the master controller with the slave controllers.

Furthermore, the work reported in (Yuan et al. 2019) presents an exoskeleton for lower extremities

with eight DOFs: four actives (using Maxon motors) and four passives. Its communication system

allows the monitoring, the analysis of data, and the adjustment of operating parameters in real-time.

This research compares two versions of a communication system based on the CAN protocol for a

lower limb exoskeleton called ALLEX-2, which results from several research projects at the

University of Cuenca. The first version of the communication system used only the CAN functions

provided by Maxon Motor, resulting in a system with acceptable performance, although not

sufficient for the requirements of the exoskeleton. On the other hand, the second version involved

the development of proprietary software to achieve performance as close to real-time as possible.

With this latest version, the communication system showed a substantial improvement in the times

for reading and writing tasks. This it was possible to meet the needs of the robotic device.

This document is organized as follows: Section 2 presents the methodology of this study. Section 3

presents experimental results and a discussion of the main findings. And finally, Section 4 presents

the conclusions.

2. Methodology

This work presents the development of the base functions for the software for the

communication system of the ALLEX-2 prototype. Figure 1 shows the CAN architecture of the

ALLEX-2 prototype. Seven nodes are connected to the CAN bus, one master node with a Raspberry

Pi 4, and six secondary nodes with the EPOS4 50/8 (Easy Positioning System) devices. The initial

node of the bus is node 3, and the final one is node 6. This architecture allows the communication of

a distributed control system, where the master node generates the movement trajectories of each

joint and sends the commands to the secondary nodes. The main objective of the CAN

Novasinergia 2022, 6(1), 95-104 97

communication system is to guarantee that the processing and transmission times of the commands

are as short as possible.

The transmission time is reduced by implementing a bus with less than 25 m of length, which allows

a maximum transfer rate of 1 Mbps (CIA 2005). It is also possible to decrease the processing time by

using functions that accomplish their goal with as few internal processes as possible. This work

focuses on the writing and reading processes of CAN frames. The former ones are present in the last

part of the processes implemented in the master node. These processes are responsible for taking

the resulting data from the control calculations, assembling the CAN frames, and sending the

information to the channel. The latter refers to the processing of the measurements sent by the

secondary nodes.

Figure 1: Layout of the CAN topology in the exoskeleton (Cordova et al. 2023).

The need to create new CAN write and read functions arises from the existing functions' poor

performance. As mentioned, the prototype uses devices from the manufacturer Maxon, for which it

Novasinergia 2022, 6(1), 95-104 98

was decided, in the first instance, to use the software provided by the same manufacturer. The

following subsection shows the Maxon function description.

2.1 Maxon Motor functions for CAN

The EposCmd library implemented by Maxon Motors allows communication management

in a master node, where the user and the EPOS4 applications are executed. This library has functions

for both network management and CAN communication. The administration functions perform the

necessary configurations to open a port to send and receive CAN frames and to prepare the EPOS4

for movement. In this research, these functions are not replaced. For CAN communication, this

library has low-layer functions for writing and reading called VCS_SendCANFrame (MAXON_W)

and VCS_ReadCANFrame (MAXON_R), respectively. The functions of Maxon Motors are not open

source, so their internal operation is a black-box. Algorithm 1 presents a summary of the described

functions based on an inference of the required parameters. It can be seen that there is a system for

error handling and data conversion to the CAN frame format. In addition, the reading function

includes a timeout or maximum waiting time. The EposCmd library implemented by Maxon Motors

allows communication management in a master node, where the user and the EPOS4 applications

are executed. This library has functions for both network management and CAN communication.

The administration functions perform the configurations to open a port to send and receive CAN

frames and to prepare the EPOS4 for movement. In this research, these functions are not replaced.

For CAN communication, this library has low-layer functions for writing and reading called:

VCS_SendCANFrame (MAXON_W) and VCS_ReadCANFrame (MAXON_R), respectively. The

functions of Maxon Motors are not open source, so their internal operation is a black-box. Algorithm

1 presents a summary of the described functions based on an inference of the required parameters.

It can be seen that there is a system for error handling and data conversion to the CAN frame format.

In addition, the reading function includes a timeout or maximum waiting time.

Algorithm 1: MAXON's CAN writing and reading functions

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

function MAXON_W(handle,

 COBID, data lenght,

 data, error pointer)

 process data

 send can frame

 if everthing ok return True

 else return False

function MAXON_R(handle,

 COBID, data length,

 timeout, errorCode)

 Wait for CAN frame

 if everything ok

 return true and CAN frame

 else

 return false and error code

2.2 Implemented writing and reading functions

The purpose of these functions (ALLEX_W and ALLEX_R) is to improve the performance of

the communication system by reducing processing time. To achieve this, functions with more

efficient control over the subprocesses necessary to send or receive CAN frames are implemented.

These new tools use the SocketCAN (Community. n.d.) library as a base. This library is designed to

be similar to the TCP/IP protocols. Such an approach makes it easier for programmers to develop

CAN applications.

Novasinergia 2022, 6(1), 95-104 99

Algorithm 2 shows the structure of the writing function called ALLEX_W. This function takes the

data to send and transforms it into a frame object. This object serves as an input to the writing

method of the SocketCAN library. The input parameters of this function are communication object

identifier (COBID (CAN in Automation (CiA) e. V. 2011)), data, data length, and a socket. The latter

is the link to the CAN interface and contains the necessary information for communication.

Algorithm 2: ALLEX's CAN writing function.

1:

2:

3:

4:

5:

6:

7:

8:

9:

function ALLEX_W(socket,

COBid, data length, data)

for byte in data:

frame[i]= byte

nbytes = write(socket,frame)

if nbytes == data length:

return true

else

return false

The reading function called ALLEX_R uses another socket object. A socket must be used for writing

and a different one for reading to avoid communication conflicts (Community. n.d.). The function

calls the SocketCAN reading method to listen to the channel waiting for a CAN frame. If the process

is successful, the function returns the received frame. Unlike the MAXON_R function, the reading

function does not have an internal timeout; the time control is executed in a higher process where

the read function is called 12 times (2 times for each joint). Algorithm 3 presents the structure of

ALLEX_R.

Algorithm 3: ALLEX CAN reading function

1:

2:

3:

4:

5:

6:

7:

8:

9:

struct can_frame ALLEX_R(socket)

 define nbytes, frame

 call read method

 if nbytes < 0

 return error

 else if nbytes < size of frame

 return error, incomplete frame

 else

 return frame

Maxon and ALLEX functions to write and read data on the CAN channel are compared using the

same software flow. Figure 2 indicates, in a general way, the mentioned process flow of the

exoskeleton. In this diagram, it is possible to see the reading and writing processes together with the

device's other processes. The MAXON_W and ALLEX_W functions were used in the writing

process, while MAXON_R and ALLEX_R were used in the reading process. The algorithm is

executed using one of the writes and reads options to measure the execution time, achieved through

the methodology explained in the following subsection.

Novasinergia 2022, 6(1), 95-104 100

Figure 2: General flow chart.

2.3 Processing time comparison of writing functions

The communication process between the nodes is performed according to the writing

methods described above. Before sending a CAN frame, the central node prepares the data to be

sent. Once this process is complete, the writing method is called to assemble and send the CAN

frame. To measure processing times, a ``timer'' object is used. Algorithm 4 describes the structure of

the chronometer. It starts the measurement through its constructor method and ends when the object

is destroyed to avoid undesired measurements. To measure the execution time is enough to create

an object of the timekeeper class. The measured time is appended to a vector; this avoids saving data

directly to disk to reduce timer processing. The storage process works at the end of the experiment.

The experimentation process comprises the execution of a gait cycle. This cycle lasts 8 seconds; a

sampling and transmission period of 20 ms is used. So, there are 400 writing processes and 800

reading processes per joint (one frame is written and two are read per joint). This experiment was

repeated until the data shown in the result section was obtained.

Algorithm 4: High resolution chronometer

Novasinergia 2022, 6(1), 95-104 101

1:

2:

3:

4:

5:

6:

7:

struct Timekeeper{

 Timekeeper //Constructor

 start = high resolution clock now

 ~Timekeeper //Destructor

 Stop = high resolution clock now

 duration = stop-start

 save duration

3. Results

To obtain sufficient data to compare the Maxon and ALLEX functions, the algorithm of

Figure 2 was executed while the times of interest were measured. The times are measured in the

read-and-write loop (circled in the green box). In the prototype's context, the experiment monitored

a gait trajectory; this monitoring was carried out only with three nodes. In each execution of the

algorithm, 400 frames per node were written, that is, 1200 frames per execution. When writing a

frame, we have a sample of the execution time of the writing function. In total, 6000 measurements

were collected for each writing method.

Table 1 shows the results of 6000 executions of the writing method, five experiments for three joints.

This table indicates that the method developed in this project (ALLEX_W), on average, performs

5.76 times faster than the MAXON_W method. Also, the reduction in standard deviation means that

the ALLEX_W function is more stable than MAXON_W.

Table 1: Measurement result of writing execution times.

 MAXON_W (ms) ALLEX_W (ms)

Mean 1.8875 0.3275

Standard deviation 0.3135 0.1492

Max 8.6899 8.5573

Min 1.5451 0.2258

Figure 3 shows that 99.96% of the execution times for the ALLEX_W function are under 2 ms. On

the other hand, 22.37% of MAXON_W execution times are between 2 and 9 ms, while only 0.033%

of ALLEX_W function times are over this interval.

Figure 3: Execution time histogram for CAN writing methods.

During the experimentation, exchanging the reading methods, it was found that the internal

structure of the MAXON_R function was not designed for a 20 ms sampling period. This function

caused the system to stop, and the reading processes were not executed. Instead, the function

Novasinergia 2022, 6(1), 95-104 102

developed in this research performs reading processes at a time lower than the mentioned period.

The results show that 99.75% of the times the reading takes less than 2 ms when measuring the

processing time to read six frames (2000 measures of six frames reading time). The communications

system requires reading two frames per join every 20 ms, and the results show that the implemented

reading function is better than expected.

This communication system is an essential part of the development of the ALLEX-2. The trajectory

references generated by the central processor through this system are transmitted to the distributed

controllers. Then, proof of the efficiency of the ALLEX-2 CAN functions can be obtained by

analyzing the result of the trajectory tracking in a system where the functions developed in this work

are the base of the communication. Figure 4 shows that the root-mean-square tracking error is low

in the device performance tests with and without load; this proves that the communication system

meets the design requirements. More details about the control system result can be found (Cordova

et al. 2023). The source code of the ALLEX-2 project is available in Github

(https://github.com/Hiyperion/ALLEX2_SOFT.git).

Figure 4: Tracking error for a gait cycle, right lower limb (Cordova et al. 2023).

4. Conclusions

The library developed in this research has better performance features compared to the one

provided by Maxon for both writing and reading tasks. In the case of writing, the ALLEX_W

function executes 5.76 times faster than the function provided by the Maxon Motor. Also, this

improvement implies that the control system can send more operation commands to the

exoskeleton.

In this work, the ALLEX_R reading function is significantly better than that provided by Maxon

Motor. The function developed in this work can be used in similar applications that require sampling

times between 2 ms and 20 ms. This is supported by the results, which show that 99.75% of the

https://github.com/Hiyperion/ALLEX2_SOFT.git

Novasinergia 2022, 6(1), 95-104 103

reading times for 6 frames is less than 2 ms. Even if fewer frames were used, this time could be less

than 2 ms, allowing other processes to be carried out until the sampling time is completed.

Although manufacturers provide tools and software for the fast development of applications. In the

case of robotic devices such as exoskeletons, where high performance is required, it is better to

develop software that allows the device's requirements to be satisfied. In this research, the developed

functions allow the communication system of the ALLEX-2 exoskeleton to comply with the times

required for its operation.

Author contributions

En concordancia con la taxonomía establecida internacionalmente para la asignación de

créditos a autores de artículos científicos (https://casrai.org/credit/). Los autores declaran sus aportes

en la siguiente matriz de contribuciones:

M
o

ra
le

s,
 H

..

C
o

rd
o

v
a,

 A
..

M
in

ch
al

a,
 I

..

S
at

u
d

il
lo

-S
al

in
as

,

F
..

Conceptualización

Análisis formal

Investigación

Metodología

Recursos

Validación

Redacción – revisión y edición

Conflicts of Interest

The authors declare that there are no conflicts of interest in any nature.

Acknowledgment

The authors are grateful for the support provided by the Research vice-rectorate of the

University of Cuenca, under the financing of the project: ``Robotic exoskeleton for functional

assistance in walking patients with incomplete spinal cord injuries: design and initial application".

References

Bosch. (1991). “CAN Specification.”. Obtenido de http://esd.cs.ucr.edu/webres/can20.pdf

CAN in Automation (CiA) e. V. 2011. “CANopen Application Layer and Communication Profile.”.

Obtenido de file:///mnt/429874b3-0f62-46ad-98c6-

f1dd11bed9c1/Descargas/301v04020006_cor3.pdf

 CIA. (2005). “CAN in Automation (CiA): CANopen.” (January):1–26.

 Community., Kernel development. (n.d). “SocketCAN - Controller Area Network — The Linux

Kernel Documentation.”. Obtenido de https://docs.kernel.org/networking/can.html

Novasinergia 2022, 6(1), 95-104 104

Cordova, A. F., Morales, H., Astudillo-Salinas, F., Zhang, H., & Minchala, L. I. (2023). “Deployment

of a High-Speed Communication Network to Enable Real-Time Control of a Lower Limb

Robotic Exoskeleton. International Journal of Innovative Computing, Information and Control.

DOI: DOI: 10.24507/ijicic.19.01.181

Farsi, M., Ratcliff, K., & Barbosa, M. (1999). An overview of controller area network. Computing &

Control Engineering Journal, 10(3), 113-120. DOI: 10.1049/cce:19990304

Lu, R., Li, Z., Su, C. Y., & Xue, A. (2013). Development and learning control of a human limb with a

rehabilitation exoskeleton. IEEE Transactions on Industrial Electronics, 61(7), 3776-3785. DOI:

10.1109/TIE.2013.2275903

Maxon. 2022. “Discover the Maxon’s World of Drive Technology | Maxon Group.” Obtenido de

https://www.maxongroup.com/maxon/view/content/index

Di Natale, M., Zeng, H., Giusto, P., & Ghosal, A. (2012). Understanding and using the controller area

network communication protocol: theory and practice. Springer Science & Business Media.

DOI: 10.1007/978-1-4614-0314-2

Pan, C. T., Chang, C. C., Sun, P. Y., Lee, C. L., Lin, T. C., Yen, C. K., & Yang, Y. S. (2019). Development

of multi-axis motor control systems for lower limb robotic exoskeleton. Journal of Medical and

Biological Engineering, 39(5), 752-763. DOI: https://doi.org/10.1007/s40846-018-0449-z

Seoane, L., Díaz, C., Zafra, J., Ibarmia, S., Quintana, C., Canora, C. P., ... & Araujo, A. (2018). CAN

implementation and performance for Raman Laser Spectrometer (RLS) Instrument on

Exomars 2020 Mission. IEEE Transactions on Emerging Topics in Computing, 9(1), 67-77. DOI:

10.1109/TETC.2018.2874643

Yuan, Y., Li, Z., Zhao, T., & Gan, D. (2019). DMP-based motion generation for a walking exoskeleton

robot using reinforcement learning. IEEE Transactions on Industrial Electronics, 67(5), 3830-

3839. DOI: 10.1109/TIE.2019.2916396

