Novasinergia 2023, 6(1), 06-18 17
sheep. Journal of Chromatography B, 876(1), 148-152.
https://doi.org/10.1016/j.jchromb.2008.10.026
Gómez, M. (Julio de 2017). Validación de métodos de cribado para la detección de antibióticos en
lactosuero de cabra. Tesis de maestría, Universidad Politécnica de Valencia, España, (Tesis
de Master). http://hdl.handle.net/10251/87168
Hakk, H., Shappell, N., & Lupton, S. (2016). Distribution of animal drugs between skim milk and
milk fat fractions in spiked whole milk: understanding the potential impact on commercial
milk products. Journal of Agricultural and Food Chemistry, 64(1), 326-335.
https://doi.org/10.1021/acs.jafc.5b04726
Homem, V., & Santos, L. (2011). Degradation and removal methods of antibiotics from aqueous
matrices–a review. Journal of environmental management, 92(10), 2304-2347.
https://doi.org/10.1016/j.jenvman.2011.05.023
Jeon, M., Kim, J., Paeng, K. J., Park, S. W., & Paeng, I. R. (2008). Biotin–avidin mediated competitive
enzyme-linked immunosorbent assay to detect residues of tetracyclines in milk.
Microchemical Journal, 88(1), 26-31. https://doi.org/10.1016/j.microc.2007.09.001
Kitazono, Y., Ihara, I., Yoshida, G., Toyoda, K., & Umetsu, K. (2012). Selective degradation of
tetracycline antibiotics present in raw milk by electrochemical method. Journal of hazardous
materials, 243, 112-116. https://doi.org/10.1016/j.jhazmat.2012.10.009
Lindmark-Månsson, H., & Åkesson, B. (2000). Antioxidative factors in milk. British Journal of
Nutrition, 84(S1), 103-110. https://doi.org/10.1017/S0007114500002324
Margot, J., Maillard, J., Rossi, L., Barry, D. A., & Holliger, C. (2013). Influence of treatment conditions
on the oxidation of micropollutants by Trametes versicolor laccase. New biotechnology, 30(6),
803-813. https://doi.org/10.1016/j.nbt.2013.06.004
Martínez-Costa, J. I., Rivera-Utrilla, J., Leyva-Ramos, R., Sánchez-Polo, M., & Velo-Gala, I. (2018).
Individual and simultaneous degradation of antibiotics sulfamethoxazole and trimethoprim
by UV and solar radiation in aqueous solution using bentonite and vermiculite as
photocatalysts. Applied Clay Science, 160, 217-225. https://doi.org/10.1016/j.clay.2017.12.026
Mata, G., Salmones, D., & Savole, J. (2017). Las enzimas lignocelulolíticas de Pleurotus spp. En S. José,
& R. Daniel, La biología, el cultivo y las propiedades nutricionales y medicinales de las setas
Pleurotus spp (págs. 68-75). Chiapas: ECOSUR. Obtenido de
https://bibliotecasibe.ecosur.mx/sibe/book/000042177
Ozdemir, Z., Tras, B., & Uney, K. (2018). Distribution of hydrophilic and lipophilic antibacterial
drugs in skim milk, cream, and casein. Journal of Dairy Science, 101(12), 10694-10702.
https://doi.org/10.3168/jds.2018-14766
Quintanilla, P., Doménech, E., Escriche, I., Beltrán, M. C., & Molina, M. P. (2019). Food safety margin
assessment of antibiotics: Pasteurized goat's milk and fresh cheese. Journal of Food Protection,
82(9), 1553-1559. https://doi.org/10.4315/0362-028X.JFP-18-434
Quintanilla, P., Cornacchini, M., Hernando, M.I., Molina, M.P., & Escriche, I. (2020). Impact of the
presence of oxytetracycline residues in milk destined for the elaboration of dairy products:
The specific case of mature goat cheese. International Dairy Journal, 101, 104595-104598.
https://doi.org/10.1016/j.idairyj.2019.104595