Novasinergia 2025, 8(1), 52-66 66
Haddaway, N. R., Page, M. J., Pritchard, C. C., & McGuinness, L. A. (2022). PRISMA2020: An R package and
Shiny app for producing PRISMA 2020-compliant flow diagrams, with interactivity for optimised
digital transparency and Open Synthesis. Campbell Systematic Reviews, 18(2), e1230.
https://doi.org/10.1002/cl2.1230
Haindl, P., & Weinberger, G. (2024). Students’ Experiences of Using ChatGPT in an Undergraduate
Programming Course. IEEE Access, 12, 43519-43529. https://doi.org/10.1109/ACCESS.2024.3380909
Harzing, A.W. (2007). Publish or Perish. https://harzing.com/resources/publish-or-perish
Jošt, G., Taneski, V., & Karakatič, S. (2024). The Impact of Large Language Models on Programming Education
and Student Learning Outcomes. Applied Sciences, 14(10), 4115. https://doi.org/10.3390/app14104115
Kau, A., He, X., Nambissan, A., Astudillo, A., Yin, H., & Aryani, A. (2024). Combining Knowledge Graphs and
Large Language Models. arXiv Computer Science. https://doi.org/10.48550/arXiv.2407.06564
Kazemitabaar, M., Chow, J., Ma, C. K. T., Ericson, B. J., Weintrop, D., & Grossman, T. (2023). Studying the effect
of AI Code Generators on Supporting Novice Learners in Introductory Programming. Proceedings of the 2023
CHI Conference on Human Factors in Computing Systems, 1-23.
https://doi.org/10.1145/3544548.3580919
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff,
J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M.,
Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Alonso-Fernández, S. (2021). Declaración
PRISMA 2020: Una guía actualizada para la publicación de revisiones sistemáticas. Revista Española de
Cardiología, 74(9), 790-799. https://doi.org/10.1016/j.recesp.2021.06.016
Pornprasit, C., & Tantithamthavorn, C. (2024). Fine-tuning and prompt engineering for large language
models-based code review automation. Information and Software Technology, 175, 107523.
https://doi.org/10.1016/j.infsof.2024.107523
Tao, N., Ventresque, A., Nallur, V., & Saber, T. (2024). Enhancing Program Synthesis with Large Language
Models Using Many-Objective Grammar-Guided Genetic Programming. Algorithms, 17(7), 287.
https://doi.org/10.3390/a17070287
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I.
(2017). Attention is all you need. arXiv Computer Science. https://doi.org/10.48550/arXiv.1706.03762
Wang, R., Xu, S., Tian, Y., Ji, X., Sun, X., & Jiang, S. (2024). SCL-CVD: Supervised contrastive learning for code
vulnerability detection via GraphCodeBERT. Computers & Security, 145, 103994.
https://doi.org/10.1016/j.cose.2024.103994
Weber, I. (2024). Large Language Models as Software Components: A Taxonomy for LLM-Integrated
Applications. arXiv Computer Science. https://doi.org/10.48550/ARXIV.2406.10300
Yun, S., Lin, S., Gu, X., & Shen, B. (2024). Project-specific code summarization with in-context learning. Journal
of Systems and Software, 216, 112149. https://doi.org/10.1016/j.jss.2024.112149
Zhou, X., Liang, P., Zhang, B., Li, Z., Ahmad, A., Shahin, M., & Waseem, M. (2025). Exploring the problems,
their causes and solutions of AI pair programming: A study on GitHub and Stack Overflow. Journal of
Systems and Software, 219, 112204. https://doi.org/10.1016/j.jss.2024.112204