Novasinergia 2025, 8(2), 06-31 31
[44] P. Olofsson, G. M. Foody, M. Herold, S. V. Stehman, C. E. Woodcock, y M. A. Wulder,
“Good practices for estimating area and assessing accuracy of land change,” Remote
Sens. Environ., vol. 148. Elsevier Inc., pp. 42–57, May. 25, 2014, doi:
https://doi.org/10.1016/j.rse.2014.02.015.
[45] J. R. Landis y G. G. Koch, “An Application of Hierarchical Kappa-type Statistics in
the Assessment of Majority Agreement among Multiple Observers,” Biometrics, vol.
33, no. 2, pp. 363–374, Jun. 1977, doi: https://doi.org/10.2307/2529786.
[46] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numer. Math.,
vol. 1, no. 1, pp. 269–271, Dec. 1959, doi: https://doi.org/10.1007/BF01386390.
[47] R. Bellman, “On a routing problem,” Quart. Appl. Math, vol. 16, no. 1, pp. 87–90,
1958, doi: https://doi.org/10.1090/qam/102435.
[48] R. W. Floyd, “Algorithm 97: shortest path,” Commun. ACM, vol. 5, no. 6, p. 345, Jun.
1962, doi: https://doi.org/10.1145/367766.368168.
[49] F. Cuesta, M. Peralvo, y D. Sánchez, Métodos para investigar la disponibilidad del
hábitat del oso andino: el caso de la cuenca del río Oyacachi, Ecuador. Quito, Ec:
EcoCiencia y Proyecto Biorreserva del Cóndor, 2001.
[50] P. Beier, “A rule of thumb for widths of conservation corridors,” Conserv. Biol., vol.
33, no. 4, pp. 976–978, Ago. 2019, doi: https://doi.org/10.1111/cobi.13256.
[51] N. Gorelick, M. Hancher, M. Dixon, S. Ilyushchenko, D. Thau, y R. Moore, “Google
Earth Engine: Planetary-scale geospatial analysis for everyone,” Remote Sens.
Environ., vol. 202, pp. 18–27, Dic. 2017, doi: https://doi.org/10.1016/j.rse.2017.06.031.
[52] J. Figueroa, M. Stucchi, y R. Rojas-VeraPinto, “Modelación de la distribución del oso
andino Tremarctos ornatus en el bosque seco del Marañón (Perú),” Rev. Mex.
Biodivers., vol. 87, no. 1, pp. 230–238, Mar. 2016, doi:
https://doi.org/10.1016/j.rmb.2016.01.008.
[53] C. Rodriguez-Cabezas, M. Mejía Salazar, y C. Quintana, “Distribución potencial de
Tremarctos ornatus (oso andino) en relación al cambio de uso de suelo de su hábitat
en las estribaciones orientales del Ecuador,” REMCB., vol. 43, no. 2, Nov. 2022, doi:
https://doi.org/10.26807/remcb.v43i2.937.
[54] M. Castelo-Cabay, J. A. Piedra-Fernandez, y R. Ayala, “Deep learning for land use
and land cover classification from the Ecuadorian Paramo,” Int. J. Digit. Earth, vol.
15, no. 1, pp. 1001–1017, 2022, doi: https://doi.org/10.1080/17538947.2022.2088872.
[55] H. Zhang et al., “Image Classification Using RapidEye Data: Integration of Spectral
and Textual Features in a Random Forest Classifier,” IEEE J. Sel. Top. Appl. Earth
Obs. Remote Sens., vol. 10, no. 12, pp. 5334–5349, Dic. 2017, doi:
https://doi.org/10.1109/JSTARS.2017.2774807.