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Abstract: In this work, we study the existence of bounded solutions for a semilinear retarded
equation with infinite delay, impulse, and non-local conditions. We also show that under
some conditions this bounded solution is unique, periodic, or almost periodic depending
on the conditions imposed on the terms involving the equation. Through this work, we
shall assume that the associated linear equation has an exponential dichotomy, allowing
us to find a formula for the bounded solutions, and from this formula, we are able to
apply Banach Fixed Point Theorem to prove the existence of such bounded solutions.

Keywords: Exponential dichotomy, bounded solution, unique, periodic, almost periodic.

Resumen: En este trabajo, estudiamos la existencia de soluciones acotadas para una ecuación
retardada semilineal con retardo infinito, impulso y condiciones no locales. También
mostramos que bajo algunas condiciones esta solución acotada es única, periódica o
casi periódica dependiendo de las condiciones impuestas a los términos que involucran
la ecuación. A través de este trabajo, asumiremos que la ecuación lineal asociada tiene
una dicotomía exponencial, lo que nos permite encontrar una fórmula para las soluciones
acotadas, y a partir de esta fórmula, podemos aplicar el Teorema del punto fijo de
Banach para demostrar la existencia de tales soluciones acotadas.

Palabras clave: Cuasi periódica, dicotomía exponencial, periódica, solución acotada, única.

1 Introduction

There are many works on the existence of
bounded solutions without impulses, non-local
conditions and delay simultaneously, to men-
tion we have the works done in((Leiva, 1999a,
2000, 1999b; Leiva & Sivoli, 2003; Leiva & Se-
quera, 2003; Leiva & Sivoli, 2018; Liu, 2000; Liu
et al., 2006)). Recently, in (Ayala et al., 2020)
the existence of solutions for retarded equations
with infinite delay, impulses, and non-local con-
ditions has been proved using Karakosta’s fixed
point theorem. In (Abbas et al., 2020), the exis-
tence of periodic mild solutions of infinite delay

evolution equations with non-instantaneous im-
pulses has been studied, by using Poincare map,
measure of non-compactness and Darbo fixed
point theorem. Compared with these works,
in addition we have non-local conditions, and
first, we prove the existence of bounded solu-
tions, and under son conditions these bounded
solutions are stable, periodic or almost periodic
depending on the conditions impose to the lin-
ear and non-linear term. Without further ado,
in this work we shall study the existence of
bounded solutions for the following semi-linear
non-autonomous retarded equation with infinite
delay, impulses and non-local condition:
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
z′ =A(t)z+f(t,zt), t > 0, t 6= tk,
z(s) +g(zτ1 , · · · ,zτq )(s) = φ(s), s ∈ (−∞,0) = R−,
z(t+k ) = z(t−k ) +Jk(tk,z(tk)), k = 1,2, · · · ,P,

where A(t) is a continuous n×n matrix defined on R, φ ∈ PW the space defined as follows
PW = {φ : (−∞,0]→ Rn : φ is bounded and continuous except in a finite number
of point, sφk,k = 1,2, . . . ,p, where the side limits exists φ(s−φk), φ(s+

φk) = φ(sφk)}
endowed with the norm

‖ φ ‖PW= sups∈R− ‖ φ(s) ‖,

where the side limits are defined as follows φ(s+
φk) = lim

s→s+
φk
φ(s) and φ(s−φk) = lim

s→s−
φk
φ(s).

Here, 0< t1 < t2 < · · ·< tp, 0< τ1 < τ2 < .. . < τq, and the functions
g : (PW)q→PW, JK : R×Rn→ Rn, f : R×PW → Rn

are smooth enough such that the problem (1) admits only one solution z(t) (see (Ayala et al., 2020))
given by

z(t) = U(t,0)[φ(0)−g
(
zτ1 , · · · ,zτq

)
(0)]

+
∫ t

0 U(t,s)f (s,zs)ds+ Σ0<tk<tU (t, tk)Jk (tk,z (tk)) , t ∈ [0, τ ]
z(s) = φ(s)−g(zτ1 , · · · ,zτq )(s), s ∈ R−.

The space (PW)q is endowed with the usual norm, and U(t,s) = Φ(t)Φ−1(s), where Φ(·) is the
fundamental matrix of the linear system

z′(t) =A(t)z(t), t ∈ R (1)
i.e., {

Φ′(t) =A(t)Φ(t)
Φ(0) = I

2 Preliminaries

In this section, we shall choose the space where this problem will be set. To this end, we shall define
the following Banach space:

PWb (R;Rn) = {z : R→ Rn :| .z |R−∈ PW and z
∣∣∣
R+

is bounded and continuous except

at the point tk, k = 1,2, . . . ,p, where z(t+k ),z(t−k ) exist and z(t+k ) = z(tk)},
endowed with the norm

‖ z ‖b= supt∈R ‖ z(t) ‖, z ∈ PWb.

Now, we shall assume the following hypotheses:
H1) The linear system (1) admits an exponential dichotomy on R. That is to say, there exist a
continuous projection P (t), t ∈ R, β > 0 and M ≥ 1 such that
i) U(t,s)P (s) = P (t)U(t,s), t,s ∈ R,

ii) ‖ U(t,s)(I−P (s)) ‖6Meβ(t−s), t> s,

iii) ‖ U(t,s)P (s) ‖6Meβ(t−s), t6 s

H2) There exists γ > 0 and ` > 0 such that

‖ g (z1,z2, . . .zq) ‖PW<
`

6 , z ∈ PW,

‖ g (z1, . . . ,zq)−g (w1, · · · ,wq) ‖PW< γsupt>a‖z(t)−w(t)‖q
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with

‖ z(t)−w(t) ‖q:=
q∑
i=1
‖ zi(t)−wi(t) ‖Rn .

H3) The function f satisfies the following local Lipschitz condition:
Given an interval [a,b] and a ball Bγ(0)⊂ PW, there exists a constant K > 0 such that

‖ f (t,z1)−f (t,z2) ‖Rn6K|t−s|+ ‖ z1−z2 ‖PW , z1,z2 ∈ Bγ(0), t,s,∈ [a,b].

Also, there exists a constant Lf > 0 such that
‖ f(t,0) ‖Rn6 Lf , t ∈ R.

H4) There are constants Sk,Lk > 0, k = 1,2, · · · ,p, such that

‖ JK (t,z1)−JK (t,z2) ‖Rn6 Sk ‖ z1−z2 ‖Rn , ∀z1,z2 ∈ Rn, ∀t ∈ R;

and
‖ JK(t,0) ‖Rn< Lk, k = 1,2, · · · ,p, t ∈ R.

Lemma 1. Under the hypotheses H1)-H4). A function z belonging to PWb is a solution of (1) if,
and only if, z is a solution of the following integral equation

z(t) =
∫ ∞
−∞

G(t,s)f (s,zs)ds+
∑

0<tk6tp

G(t, tk)Jk (tk,z (tk)) , (2)

z(s) = φ(s)−g(zτ1 , · · · ,zτq )(s), s ∈ (−∞,0] = R−,
where G(t,s) is the Green function defined by

G(t,s) =
{

U(t,s)(I−P (s)), t> s,
−U(t,s)P (s), t6 s.

(3)

Proof. Suppose that for some ρ > 0, z ∈ Bbρ(0) ⊂ PWb, where Bbρ(0) is the ball of center zero and
radius ρ > 0 in PWb, i.e.,

Bbρ(0) = {z ∈ PWb :‖ z ‖b< ρ} .

Let Lρ be the Lipschitz constant of f in Bbρ(0). On the other hand, we have that
z(t) = U(t,0)

[
φ(0)−g

(
zτ1 , · · · ,zτq

)
(0)
]

+
∫ t

0
U(t,s)f (s,zs)ds+

∑
0<tk<t

U (t, tk)Jk (tk,z (tk))

= U(t, t0)
{
U(t0,0)

[
φ(0)−g

(
zτ1 , · · · ,zτq

)
(0)
]

+
∫ t0

0
U(t0,s)f (s,zs)ds+

∑
0<tk<t0

U (t0, tk)Jk (tk,z (tk))
}
,

+
∫ t

t0

U(t,s)f (s,zs)ds+
∑

t0<tk<t

U (t, tk)Jk (tk,z (tk)) ,

for t0 < t. So,

z(t) = U(t, t0)z(t0) +
∫ t

t0

U(t,s)f (s,zs)ds+
∑

t0<tk<t

U (t, tk)Jk (tk,z (tk)) .
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Hence,

(I−P (t))z(t) = (I−P (t))U (t, t0)z(t0) +
∫ t

t0

(I−P (t))U(t,s)f (s,zs)ds

+
∑

t0<tk<t

(I−P (t))U (t, tk)Jk (tk,z (tk))

= U(t, t0)(I−P (t0))z (t0) +
∫ t

t0

U(t,s)(I−P (s))f (s,zs)ds

+
∑

t0<tk<t

U (t, tk)(I−P (tk))JK (tk,z (tk)) .

On the other hand,

‖ U (t, t0)(I−P (t0))z (t0) ‖6M ‖ z (t0) ‖ e−β(t−t0), t0 6 t.

But, ‖ z ‖b< ρ. Then,

‖ U (t, t0)(I−P (t0))z (t0) ‖6Mρe−β(t−t0).

Passing to the limit as t0→−∞, we obtain that

lim
t0→−∞

‖ U (t, t0)(I−P (t0))z (t0) ‖= 0.

Therefore, we get that

(I−P (t))z(t) =
∫ t

−∞
U(t,s)(I−P (s))f(s,z)ds+

∑
0<tk<t.

(U (t, tk)(I−P (tk))Jk (tk,z (tk)) . (4)

Now, let us prove that this improper integral converges.

‖
∫ t

−∞
U(t,s)(I−P (s))f(s,zs)ds ‖6

∫ t

−∞
‖ U(t,s)(I−P (s))f(s,zs)ds

6
∫ t

−∞
Me−β(t−s) ‖ f(s,zs) ‖ ds

=
∫ t

−∞
Me−β(t−s) ‖ f(s,zs)−f(s,0) +f(s,0) ‖ ds

6
∫ t

−∞
Me−β(t−s)(Lρρ ‖ zs ‖+Lf )ds

=
M(Lρρ+Lf )

β
<∞.

Now, we shall suppose that t0 > t. Then,
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P (t)z(t) = P (t)U(t,0)
[
φ(0)−g(t(zτ1 ,zτ2 , · · · ,zτq )(0)

]
+
∫ t

0
P (t)U(t,s)f (s,zs)ds+

∑
0<tk<t

P (t)U (t, tk)Jk (tk,z (tk))

= P (t)U(t, t0

{
U (t0,0)

[
φ(0)−g

(
zτ1 ,zτ2 , · · · ,zτq

)
(0)
]

+
∫ t0

0
U (t0,s)f (s,zs)ds+

∑
0<tk<t0

U (t0, tk)Jk(tk,z(tk))
}

+
∫ t

t0

U(t,s)P (s)f (s,zs)ds+
∑

0<tk<t
U (t, tk)P (tk)Jk (tk,z (tk))

−P (t)U (t, t0)
∑

0<tk<t0

U (t0, tk)Jk(tk,z(tk))

= P (t)U (t, t0)z (t0) +
∫ t

t0

U(t,s)P (s)f(s,zs)ds

+
∑

0<tk<t
U (t, tk)P (tk)J(tk,z(tk))−

∑
t<tk<t0

U (t, tk)P (tk)Jk (tk,z (tk))

= U (t, t0)P (t0)z (t0) +
∫ t

t0

U(t,s)P (s)f (s,zs)ds

−
∑

t<tk<t0

U (t, tk)P (tk)JK (tk,z (tk)) .

From hypothesis H1)− iii), we get that

lim
t0→+∞

‖ U (t, t0)P (t0)z (t0) ‖= 0.

Hence,

P (t)z(t) =−
∫ ∞
t

U(t,s)P (s)f (s,zs)ds−
∑

t<tk6tp

U (t, tk)P (tk)Jk (tk,z (tk)) .

Let us prove that this improper integral converges.

‖ −
∫ ∞
t

U(t,s)P (s)f (s,zs)ds ‖6
∫ ∞
t
‖ U(t,s)P (s)f (s,zs) ‖ ds

6
∫ ∞
t

Meβ(t−s) ‖ f (s,zs)−f(s,0) +f(s,0) ‖ ds

6
∫ ∞
t

Meβ(t−s) (Lρ ‖ zs ‖+Lf
)
ds

6M
(
Lρρ+Lf

)∫ ∞
t

eβ(t−s)ds

=M
(
Lρρ+Lf

)[eβ(t−s)

−β

]∞
t

=
M
(
Lρρ+Lf

)
β

<∞.
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On the other hand,
z(t) = (I−P (t))z(t) +P (t)z(t)

=
∫ ∞
−∞

G(t,s)f (s,zs)ds+
∑

0<tk6tp

G(t, tk)Jk (tk,z (tk)) .

Now, suppose that z is a solution of the integral equation (2). Then,

z(t) =
∫ t

−∞
U(t,s)(I−P (s))f (s,zs)ds−

∫ ∞
t

U(t,s)P (s)f (s,zs)ds

+
∑

0<tk<t
U (t, tk)(I−P (tk) Jk (tk,z (tk))−

∑
t<tk<tp

U (t, tk)P (tk)JK (tk,z (tk)) .

Therefore,

z′(t) =
∫ t

−∞
A(t)U(t,s)(I−P (s))f (s,zs)ds−

∫ ∞
t

A(t)U(t,s)P (s)f (s,zs)ds

+ (I−P (t))f (t,zt) +P (t)f (t,zt) +
∑

0<tk<t
A(t)U (t, tk)(I−P (tk))Jk(tk,z(tk))

−
∑

t<tk<tp

A(t)U (t, tk)(P (tk))Jk(tk,z(tk)).

Hence,

z′(t) =A(t)z(t) +f (t,zt) , t> 0.

3 Existence of bounded solutions

In this section, we shall prove the existence of bounded solutions for the system (1), and under some
conditions, we prove the uniqueness of such a bounded solution. Also, under additional conditions,
we prove the stability of these bounded solutions as well.
Theorem 1. Assume the hypotheses H1)-H4). Let Bbρ be the ball of center zero and radius ρ in
PW, and Lρ the Lipschitz constant of f in B2ρ. If the following estimate holds

ρ

(
1−M

(
2Lρ+βS

β

))
>M

(
2Lf +βL̃

β

)
(5)

where S =
∑

0<tk<t sk and L̃ =
∑P
K=1Lk, then the system (1) admits one, and only one, bounded

solution zb with ‖ zb(t) ‖6 ρ, t ∈ R. Moreover, if additionally we assume that P (t)≡ 0 and

5
6 + 3MLρ

β
+ 3SM < 1 and `6 S (6)

this bounded solution is locally stable.

Proof. From Lemma 1, it is enough to prove that the operator

K : PWb −→ PWb

t 7−→ (Kz)(t) =
∫∞
−∞G(t,s)f (s,zs)ds+

∑
0<tk 6 tpG(t, tk)Jk (tk,z (tk)) ,
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has a fixed point in Bbρ. For z ∈ Bbρ, we have the following estimate

‖ (Kz)(t) ‖Rn≤
∫ ∞
−∞
‖G(t,s) ‖‖ f (s,zs) ‖ ds+

∑
0<tk6tp

‖G(t, tk) ‖ Jk (tk,z (tk)) ‖ .

From the definition of the Green function, we obtain that

‖G(t,s) ‖6Me−β|t−s|, t,s ∈ R.
Therefore,

‖ (Kz(t) ‖6
∫ ∞
−∞

Me−β|t−s| ‖ f (s,zs)−f(s,0) +f(s,0) ‖ ds

+
∑

0<tk<tp

Me−β|t−tk| ‖ Jk (tk,z (tk))−Jk (tk,0)−Jk (tk,0) ‖

6
∫ ∞
−∞

e(β|t−s|{Lρ ‖ zs ‖+Lf
}
ds+

P∑
k=1

M {Sk ‖ z (tk) ‖+Lk}

6M
{
Lρρ+Lf

}(∫ ∞
t

eβ(t−s) +
∫ t

−∞
e−β(t−s)

)
+Mρ

P∑
k=1

sk+M

P∑
k=1

Lk

6M{Lρρ+Lρ}
(

1
β

+ 1
β

)
+MρS+ML̃

=
2M

{
Lρρ+Lf

}
β

+M{ρS+ L̃}.

From (5), we get that
‖ (Kz)(t) ‖< ρ =⇒ ‖Kz ‖b< ρ ⇐⇒ K(B)⊂ Bbρ.

‖ ((Kz)(t)− (Kz̃)(t) ‖‖6
∫ ∞
−∞

Meβ|t−s| ‖ (f,zs)−f (s, z̃s) ‖ds

+
P∑
k=1

M ‖ Jk
(
tk,,z (tk)

)
−Jk (tk, z̃ (tk)) ‖

6MLρ ‖ z− z̃ ‖
∫ ∞
∞

e−β|t−s|ds

+M

P∑
k=1

Sk ‖ z (tk)− z̃ (tk) ‖

6
2MLρ
β

‖ z− z̃ ‖+MS ‖ z− z̃ ‖

=
(

2MLρ+βMS

β

)
‖ z− z̃ ‖

=M

(
2Lρ+βS

β

)
‖ z− z̃ ‖ .

From (5), we know that

M

(
2Lρ+βS

β

)
< 1,

which implies that K is a contraction. Then, applying Banach fixed point Theorem, we get that K
has a unique fixed point in the ball Bbρ, i.e., there exists zb ∈ Bbρ, such that

zb =Kzb.
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Hence,

zb(t) =
∫ ∞
−∞

G(t,s)f(s,zbs)ds+
∑

0<tk6tp

G(t, tk)J
(
tk,z

b (tk)
)
.

To prove that zb(t) is locally stable, we consider any other solution z(t) of (1) such that∥∥z(t0)−zb(t0)
∥∥ < ρ/2. Then ‖ z(t0) < 2ρ. As long as ‖z(t)‖ remains less than 2ρ, we get the fol-

lowing estimate
‖ z(t)−zb(t) ‖6‖ U (t, t0) ‖

[
‖ z(t0)−zb(t0) ‖+ ‖ g

(
zτ1 , . . .τq

)
(t0)−g

(
zbτ1,···,z

b
τq

)
(t0) ‖

]
∫ t

t0

‖ U(t,s) ‖‖ f (s,zs)−f
(
s,zbs

)
‖ ds

+
∑

0<tk<t
‖ U (t, tk) ‖‖ JK (tk,z (tk))−Jk (tk,z (tk)) ‖ .

Since P (t)≡ 0, then
‖ U(t,s) ‖6Me−β(t−s), t> s.

Therefore,
‖ z(t)−zb(t) ‖6M ‖ z(t)−zb(t) ‖+ ‖ g

(
zτ1 , . . .τq

)
−g
(
zbτ1,···,z

b
τq

)
‖

+M

∫ t

t0

e−β(t−s) ‖ f (s,zs)−f
(
s,zbs

)
‖ ds

+
∑

0<tk<t
Me−β(t−tk) ‖ Jk (tk,z (tk))−Jk

(
tk,z

b (tk)
)
‖ .

Let t1 = sup{t > t0 : ‖z(t)‖< 2ρ}. Then either t1 =∞ or ‖z(t1)‖= 2ρ. Then, from the above estimate
one can get that

‖ z(t)−zb(t) ‖< ρ

2 + 2`
6 + M

β
LρsupS∈[t0,t1] ‖ z(s)−zb(s) ‖+M

∑
0<tk<t1

Sk ‖ z (tk)−zb (tk) ‖

<
ρ

2 + 2`
6 + 3ρM

β
Lρ+ 3ρMS

<

(
1
2 + 1

3 + 3MLρ
β

+ 3MS

)
ρ

=
(

5
6 + 3MLρ

β
+ 3S

)
ρ.

Thus,

ρ <

(
5
6 + 3MLρ

β
+ 3MS

)
ρ,

which is a contradiction. Therefore, t1 =∞ and z(t) ∈ Bb2ρ, t> t0. Now, define

‖ z−zb ‖+= supt>t0 ‖ z(t)−z
b(t) ‖

Then,

‖ z−zb ‖+ 6‖ z (t0)−zb (t0) ‖+ ‖ g
(
zτ1 , . . .τq

)
−g
(
zbτ1,···,z

b
τq

)
‖+LρM

β
‖ z−zb ‖+ +SM ‖ z−zb ‖+

6‖ z (t0)−zb (t0) ‖+γ ‖ z(·)−zb+ + MLρ

β
‖ z−zb ‖+ +SM ‖ z−zb ‖+

which implies that (
1−Θ−MLρ

β
−MS

)
‖ z−z0 ‖6‖ z(t0)−zb(t0) ‖
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By putting Θ = γ+ MLρ
β +MS, we obtain that

‖ z−zb1 ‖+6
1

1−Θ ‖ z(t0)−zb(t0) ‖ .
This implies the stability.

To prove the uniqueness of the bounded solution globally, we need the following additional hypothesis:
H5) The function f is globally Lipschitz, i.e., there exists a constant L > 0 such that

‖ f (t,z1)−f (s,z2) ‖< L{|t−s|+ ‖ z1−z2 ‖PW} ∀t,s,∈ R, ∀z1,z2 ∈ PW.

Theorem 2. Suppose the hypotheses H1),H2),H3),H5 hold and

0< ML

β
+SM <

1
6 .

Then the equation (1) admits one, and only one, bounded solution zb(t) for t ∈ R. Moreover, if
condition (6) holds, then this bounded solution is globally uniformly stable.

Proof. Let L > 0 be the Lipschitz constant of f . Then, there exists ρ1 > 0 such that(
1− 6ML

β
−6MS

)
ρ1 >

ML

β
+ L̃M

⇐⇒
(

1− 6ML−6βMS

β

)
ρ1 >

ML+βL̃M

β
.

Then, applying Theorem 1, for each ρ > ρ1, we obtain the existence of an unique bounded solution
of system (1) in the ball Bbρ. Hence the problem (1) has one, and only one, globally bounded solution
zb. To prove the uniform stability, we assume that P (t) ≡ 0, consider other solution z(t) of (1), and
the following estimate

‖ z−zb ‖+6
1

1−Θ ‖ z (t0)−zb (t0) ‖,

where
Θ =

[
γ+ ML

β
+MS

]
.

Since Θ does not depend on ρ and t0, the stability is globally uniform.

4 Periodic and Almost periodic solutions

In this section, we shall prove that under some additional conditions, the bounded solutions give by
Theorems 1 and 2 are periodic or almost periodic. To this end, in order to prove the periodicity of
the bounded solution zb(·), we shall assume the following hypotheses:
H6) f(t,φ) = f(t+T,φ), t ∈ R, φ ∈ PW.
H7) A(t+T ) =A(t), t ∈ R.
From the Floquet Theory, there exists a continuous periodic matrix D(t) and a constant matrix L
such that for t ∈ R

D(t+T ) =D(t), and Φ(t) =D(t)eLt.
From here we get that

U(t+T,s+T ) =D(t+T )eL(t+T )e−L(s+T )D−1(s+T ) =D(t)eL(t−s)D−1(s) = U(t,s).
Lemma 2. Under the hypotheses H6)-H7) the unique bounded solution zb(·) given in Theorem 1 and
Theorem 2 is also T-periodic for t > tp.
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Proof. Let zb be the unique solution of (1) in the ball Bbρ. Now, we shall prove that z(t) = zb(t+T )b
is also a solution of (1) in the ball Bbρ for t > t0 > tp. Observe that

zbs+T (u) = zb(s+u+T ) = z(s+u) = zu(s).
Let t > t0 > tp, and consider

zb(t) =
∫ ∞
−∞

G(t,s)f(s,zbs)ds+
∑

0<tk6tp

G(t, tk)J(tk,zb(tk))

=
∫ t

−∞
U(t,s)(I−P (s))f(s,zbs)ds−

∫ ∞
t

U(t,s)P (s)f(s,zbs)ds

+
∑

0<tk6tp

U(t, tk)(I−P (tk))Jk(tk,zb(tk))−
∑

t<tk6tp

U(t, tk)P (tk)Jk(tk,zb(tk))

=
∫ t0

−∞
U(t,s)(I−P (s))f(s,zbs)ds+

∫ t

t0

U(t,s)(I−P (s))f(s,zbs)ds

−
[∫ t

t0

U(t,s)P (s)f (s,zs)ds+
∫ t0

−∞
U(t,s)P (s)f (s,zs)ds

]
+

∑
0<tk6tp

U (t, tk)(I−P (tk))Jk(tk,zb(tk))

=
∫ ∞
−∞

G(t,s)(I−P (s))f
(
s,zbs

)
ds

+
∫ t

t0

G(t,s)f
(
s,zbs

)
ds+

∑
0<tk6tp

U (t, tk)(I−P (tk))Jk(tk,zb(tk))

= U(t, t0)[
∫ ∞
−∞

G(t0,s)f(s,zbs)ds+
∑

0<tk6tp

U (t0, tk)(I−P (tk))Jk(tk,zb(tk))]

+
∫ t

t0

G(t,s)f(s,zbs)ds.

Therefore, for t > t0 > tp , we have that

zb(t) = U (t, t0)zb (t0) +
∫ t

t0

G(t,s)f
(
s,zbs

)
ds. (7)

Hence,

zb(t+T ) = U (t+T,t0)zb (t0) +
∫ t+T

t0

G(t+T,s)f
(
s,zbs

)
ds

= U(t+T,t0)zb (t0) +
∫ t

t0−T
G(t+T,s+T )f

(
s+T,zbs+T

)
ds

= U (t+T,t0 +T )U (t0 +T,t0)zb (t0) +
∫ t

t0−T
G(t,s)f (s,zs)ds

= U (t, t0)U (t0 +T,t0)zb (t0) +
∫ t0

t0−T
G(t,s)f (s,zs)ds+

∫ t

t0

G(t,s)f (s,zs)ds

= U (t, t0)
[
U (t0 +T,t0)zb (t0) +

∫ t0

t0−T
G(t0,s)f (s,zs)ds

]
+
∫ t

t0

G(t,s)f (s,zs)ds

= U (t, t0)z0 +
∫ t

t0

G(t,s)f (s,zs)ds,
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which implies that

z(t) = U(t, t0)z0 +
∫ t

t0

G(t,s)f (s,zs)ds,

where

z0 = U(t0 +T,t0)zb(t0) +
∫ t0

t0−T
G(t0,s)f (s,zs)ds.

Therefore,
z(t) = zb(t+T )

is a solution of (1) in the ball Bbρ(0). Hence by the uniqueness of the fixed point in this ball we get
that

zb(t) = zb(t+T ), t > tp.

Now, we shall prove that the bounded solution given by Theorem 1 and Theorem 2, under some
conditions, is also almost periodic.

Let us assume the following hypotheses:
H8) Jk = g = P = 0 and the initial function φ ∈ PW is almost periodic.

H9) A(t) = A and f : R × PW → Rn is almost periodic in the first variable, uniformly in
φ ∈ PW, and globally Lipschitz in φ.
We recall the following definition and a Theorem from (Toka, 2017).
Definition 1. A jointly continuous function f : R×PW → Rn is almost periodic uniformly in φ ∈
S ⊂ PW, where S is a bounded set, if for any ε > 0 there exists `(ε)> 0 such that for any interval of
the form (α,α+ `(ε)) contains η with the property

‖ f(t+η,φ)−f(t,φ) ‖< ε, ∀t ∈ R, φ ∈ S.

Theorem 3. Let f : R×PW → Rn be almost periodic in t ∈ R, uniformly in φ ∈ S ⊂ PW, where S
is bounded. Suppose that f is globally Lipschitz in φ ∈ PW. If ζ : R→PW is almost periodic, the
function

Γ : R×PW → Rn, defined by Γ(t) = f(t,ζ(t)),
is almost periodic.
Proposition 1. Let z ∈ PWb be an almost periodic function. Then, the function

π : R −→ PW
t 7−→ π(t) = zt,

is almost periodic.

Proof. Since z is almost periodic, then for every ε > 0 there exists `(ε) > 0 such that any interval
(α,α+ `(ε)) contains η such that

‖ z(t+η)−z(t) ‖< ε, ∀t ∈ R.
Hence

‖ z(t+η+s)−z(t+s) ‖< ε, ∀t,s ∈ R.

So,
‖ π(t+η)−π(t) ‖= supS∈R− ‖ zt+η(s)−zt(s) ‖< ε, ∀t ∈ R.

In consequence π is almost periodic.
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Now, for a function ξ ∈ PWb, we consider the set

H(ξ) = {ξt : t ∈ R},
the closure in the uniform convergence topology, it is called the Hull of ξ, and it is well known

((Toka, 2017)) that: ξ is almost periodic if, and only if, H(ξ) is compact in the uniform convergence
topology.

Also, the following statement holds:
For ρ > 0, the set

Aρ = {z ∈ Bbρ : z almost periodic}
is closed.

Theorem 4. Under the hypotheses H8)-H9), the bounded solution zb given by Theorems 1 and 2 is
also almost periodic.

Proof. In this case the bounded solution zb can be written as follows

zb(t) =
∫ t

−∞
eA(t−s)f (s,zs)ds, t> 0

zb(s) = φ(s), s ∈ R−.
Now, consider the operator K :Aρ→Bbρ given by (7). From proposition 1, we have that

ξ(t) = f (t,zt) , z ∈Aρ
is almost periodic. On the other hand,

(Kz)(t) =
∫ t

−∞
eA(t−s)ξ(s)ds.

Next, we will show that H(Kz) is compact in the uniform convergence topology. In fact, consider a

sequence {(Kz)ηn} in H(Kz), where (Kz)ηn(t) = (Kz)(t+ηn). Since ξ is almost periodic, there exists
a convergent sub-sequence {hηnj }. Now, we have that

(Kz)ηnj (t) = (Kz)
(
t+ηnj

)
=
∫ t+ηnj

−∞
e
A(t+ηnj−s)

ξ(s)ds

=
∫ t

−∞
eA(t−s)ξ(s+ηnj )ds.

Then,
‖ (Kz)ηnj (t)− (K)ηnj (t) ‖6 M

β
‖ ξηnj − ξηni ‖b .

Thus, {(Kz)ηnj } is a Cauchy sequence in PWb, which implies that {(Kz)ηnj } converges. Hence

H(Kz) is compact, and (Kz) is almost periodic function. so K(Aρ) ⊂ Aρ. Therefore, the only fixed
point of K on Bbρ is in Aρ. Hence, zb(·) is almost periodic.
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5 Conclusion and Final
Remark

In this work, we prove the existence of bounded
solutions for retarded equations with infinite de-
lay, impulses, and non-local conditions. This
is achieved assuming that the associated lin-
ear system has an exponential dichotomy and
applying Banach’s fixed point theorem. Then,
under certain conditions, we prove that this
bounded solution is stable; next, under the ad-
ditional conditions, we prove that this bounded
solution is periodic after the last time impulse
tp; in the same way, under certain conditions,
we prove that this bounded solution is almost
periodic. We believe that these results can
be extended to evolution equations in infinite-
dimensional Banach spaces; in fact, this consti-
tutes our next research work in this direction.
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