Graphic user interface for synchrotron beamline

  • Jose Brito del Pino Universidad Nacional de Chimborazo
  • Felipe Brito del Pino Transmissions Department, Coorporación Nacional de Telecomunicaciones
  • Moshe Brito del Pino Universidad Nacional de Chimborazo
  • Diego Reina Universidad Nacional de Chimborazo
Palabras clave: Beamline, graphical user interface, image processing, python

Resumen

This research consisted of developing a graphical user interface in Python language for the reconstruction of images based on the propagation technique (PBI). The methodology used consisted of rewriting and ordering the existing code by reformulating it in the form of classes and methods to link them to the graphical user interface template using PyQt. The analysis requirements, design, and implementation of user graphic interface were explained. The graphical user interface permitted conducted two experiments using the PBI technique and analyzing their differences and similarities, and demonstrating that the algorithm for reconstruction was testing successfully.

Descargas

La descarga de datos todavía no está disponible.

Citas

Bech, M., Tapfer, A., Velroyen, A., Yaroshenko, A., Pauwels, B., Hostens, J. & Pfeiffer, F. (2013). In-vivo dark-field and phase-contrast x-ray imaging. Scientific reports,, 3(3209).

Beniz, D. & Espindola, A. . (2016). Using Tkinter of Python to Create Graphical User Interface (GUI) for
Scripts in LNLS. WEPOPRPO25, 09, 25–28.

Boerckel, J. D., Mason, D. E., McDermott, A. M. & Alsberg, E. (2014). Microcomputed tomography:
approaches and applications in bioengineering. Stem cell research and therapy, 5(6), 144.

Bronnikov, A. V. (2006a). Phase-contrast CT: fundamental theorem and fast image reconstruction algorithms.

Bronnikov, A. V. (2006b). Phase-contrast ct: fundamental theorem and fast image reconstruction algorithms. in
developments in x-ray tomography. International Society for Optics and Photonics., 6318, 63180Q.

Buchmann, J. & Ludwig, C. (2003). Practical lattice basis sampling reduction. Lecture Notes in Computer
Science, 4076(19).

Cai, W. (2009). Feasibility study of phase-contrast cone beam CT imaging systems. University of Rochester,
Rochester, USA, 1 edition. isbn = 9781109634686.
Chen, R. C., Rigon, L. & Longo, R. (2013). Comparison of single distance phase retrieval algorithms by considering different object composition and the effect of statistical and structural noise. Optics express, 21(6),
7384–7399.

Donzelli, M., Brauer-Krisch, E., Nemoz, C., Brochard, T. & Oelfke, U. (2016). Conformal image-guided
microbeam radiation therapy at the esrf biomedical beamline id17. 46.

ESRF (2019a). Id17 - biomedical beamline. http://www.esrf.eu/UsersAndScience/Experiments/CBS/ID17,accessed2019-04-10.

ESRF (2019b). Overview of the beamline optics. http://www.esrf.eu/UsersAndScience/Experiments/CRG/BM02/optic, accessed 2019-04-10.

Fedel, G., Piton, J., Do Carmo, L. & Beniz, D. (2017). Python for User Interfaces at Sirius. Proceedings, 16th International Conference on Accelerator and Large Experimental Physics Control Systems (ICALEPCS2017), 09, 8–13.

for Phenogenomics, T. C. (2019). Micro-computed tomography (micro-ct). http://www.mouseimaging.
ca/technologies/microct.html, accessed 2019-05-23.

Gureyev, T. E., Mayo, S. C., Myers, D. E., Nesterets, Y., Paganin, D. M., Pogany, A. & Wilkins, S. W. (2009). Refracting r¨ontgen’s rays: propagation-based x-ray phase contrast for biomedical imaging. Journal
of Applied Physics, 105(10).

King, D. M., Moran, C. M., McNamara, J. D., Fagan, A. J. & Browne, J. E. (2011). Development of
a vessel-mimicking material for use in anatomically realistic doppler flow phantoms. Ultrasound in
medicine and biology, 37(5), 813–826.

Konrad-Zuse-Zentrum (2019). Amira users guide. http://www1.udel.edu/ctcr/sites/udel.edu.ctcr/files/Amira%20Users%20Guide.pdf, accessed 2019-05-24.

Kuhlman, D. (2009). A python book: Beginning python, advanced python, and python exercises. Dave Kuhlman Lutz.

Lussani, F. C., Vescovi, R. F. D. C., Souza, T. D. D., Leite, C. A. & Giles, C. (2015). A versatile x-ray
microtomography station for biomedical imaging and materials research. Review of Scientific Instruments,
86(6). 48

Mayo, S. C., Davis, T. J., Gureyev, T. E., Miller, P. R., Paganin, D., Pogany, A. & Wilkins, S. W. (2003a). X-ray phase-contrast microscopy and microtomography. Optics express, 11(19), 2289–2302.

Mayo, S. C., Davis, T. J., Gureyev, T. E., Miller, P. R., Paganin, D., Pogany, A. & Wilkins, S. W. (2003b). X-ray phase-contrast microscopy and microtomography. Optics Express, 11(19), 2289–2302.

Mirone, A., Brun, E., Gouillart, E., Tafforeau, P. & Kieffer, J. (2013). The pyhst2 hybrid distributed code for
high speed tomographic reconstruction with iterative reconstruction and a priori knowledge capabilities.
Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and
Atoms., 3(324), 41–48.

Mohammadi, S., Larsson, E., Alves, F., Dal Monego, S., Biffi, S., Garrovo, C. & Dullin, C. (2014). Quantitative
evaluation of a single-distance phase-retrieval method applied on in-line phase-contrast images of a mouse
lung. Journal of Synchrotron Radiation, 21(4), 784–789.

Pressman, R. (2010). Ingeniería del Software (Un Enfoque Práctico), volume 1. Mc-GrawHill., España, 1 edition. isbn = 978-607-15-0314-5.

Price, R. R., Axel, L., Morgan, T., Newman, R., Perman, W., Schneiders, N. & Thomas, S. R. (1990).
Quality assurance methods and phantoms for magnetic resonance imaging: report of aapm nuclear magnetic
resonance task group no. 1. Medical physics, 17(2), 287–295.

Riverbank (2019). What is pyqt? https://riverbankcomputing.com/software/pyqt/intro, accessed 2019-04-10.

S., J. (2019). Seeded region growing (imagej plugin). http://ij-plugins.sourceforge.net/plugins/segmentation/
Howto-Seeded-Region-Growing-Segmentation. pdf, accessed 2019-05-24.

Simon, C. (2019). Gui programming in python. https://wiki.python.org/moin/GuiProgramming, accessed 2019-05-23.

Slepicka, H. H., Canova, H. F., Beniz, D. B. & Piton, J. R. (2015). Py4syn: Python for synchrotrons. Journal of
Synchrotron Radiation, 22(05), 1182–9.

Solutions, S. S. (2019a). Ct imaging calibration phantom for quantitative imaging and dose calculations. http:
//smartscientificsolutions.com/wp-content/uploads/2016/03/Promotional_Leaflet_DECT_phantoms_2016_single-sided.pdf, accessed 2019-04-10.

Solutions, S. S. (2019b). Plastimouse and plastirat. http://smartscientificsolutions.com/wp-content/uploads/2016/03/Promotional_Leaflet_PlastiMouse-PlastiRat_2016_doublesided.pdf, accessed 2019-05-23.

Stauber, M. & M¨uller, R. (2008). Micro-computed tomography: a method for the nondestructive evaluation of the three-dimensional structure of biological specimens. Osteoporosis: Methods and
Protocols, pp. 273–292.

Zhao, W., Chen, Y., Shen, L. & Allen, Y. Y. (2009). Investigation of the refractive index distribution in
precision compression glass molding by use of 3d tomography. Measurement Science and Technology,
20(5).

Zhou, S. & Brahme, A. (2008). Development of phase-contrast x-ray imaging techniques and potential
medical applications. Physica Medica, 24(3), 129–148.
Publicado
2019-12-10
Cómo citar
Brito del Pino, J., Brito del Pino, F., Brito del Pino, M., & Reina, D. (2019). Graphic user interface for synchrotron beamline. NOVASINERGIA, ISSN 2631-2654, 2(2), 58-67. https://doi.org/https://doi.org/10.37135/unach.ns.001.04.06
Sección
Artículos

##plugins.generic.recommendByAuthor.heading##