Rendimiento de la técnica de acceso múltiple no ortogonal en un sistema de comunicación móvil Long-Term Evolution
DOI:
https://doi.org/10.37135/ns.01.05.07Palabras clave:
ATSC 3.0, eficiencia espectral, LDM, LTE, NOMAResumen
La creciente demanda de datos a través de las redes móviles y la búsqueda de servicios más eficientes por parte de los usuarios han inducido a la generación de nuevas técnicas que incrementen la eficiencia espectral. El acceso múltiple no-ortogonal (NOMA) es una de las técnicas que están siendo evaluadas dentro del 3GPP (Third Generation Partnership Project), esta proporciona servicios a múltiples usuarios mediante multiplexación en potencia. Esta investigación evalúa el rendimiento de NOMA en sistemas LTE (Long Term Evolution) mediante simulaciones de capa física, en relación con las tecnologías de acceso múltiple ortogonales convencionales TDM (Time Division Multiplexing) y FDM (Frequency Division Multiplexing). Se compararán, además, las ganancias obtenidas, con las publicadas en la bibliografía de Advanced Television Systems Committee (ATSC) 3.0. Los resultados demuestran que NOMA es mejor que TDM en los casos que se utilice una tasa baja en el receptor móvil y una tasa media en el receptor fijo, demostrando ganancias de 3.35 y 0.25 respectivamente.
Descargas
Referencias
Advanced Television Systems Committee Standard. (2017). Physical layer Protocol (A/322:2017). Recuperado de https://www.atsc.org/wp-content/uploads/2016/10/A322-2017a-Physical-Layer-Protocol.pdf
Eizmendi, I., Velez, M., Gómez-Barquero, D., Morgade, J., Baena-Lecuyer, V., Slimani, M., & Zoellner, J. (2014). DVB-T2: The second generation of terrestrial digital video broadcasting system. IEEE transactions on broadcasting, 60(2), 258-271.https://doi.org/10.1109/TBC.2014.2312811
European Telecommunications Standards Institute. (2009). LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures. (ETSI TS 136 213 V8.8.0) Recuperado de https://www.etsi.org/deliver/etsi_ts/136200_136299/136213/08.08.00_60/ts_136213v080800p.pdf
European Telecommunications Standards Institute. (2013). LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation. (3GPP TS 36.211 V10.6.0 Release 10). Recuperado de
https://www.etsi.org/deliver/etsi_ts/136200_136299/136211/10.06.00_60/ts_136211v100600p.pdf.
European Telecommunications Standards Institute. (2017). LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel coding. (3GPP TS 36.212 V14.2.0 Release 14). Recuperado de
https://www.etsi.org/deliver/etsi_ts/136200_136299/136212/14.02.00_60/ts_136212v140200p.pdf
Fuentes, M. (2017). Non-Uniform Constellations for Next-Generation Digital Terrestrial Broadcast Systems (Tesis doctoral no publicada). Universitat Politècnica de València, Valencia, España. https://doi.org/doi:10.4995/Thesis/10251/84743
Garro, E., Gimenez, J., Park, S., & Gomez-Barquero, D. (2017). Scattered pilot performance and optimization for ATSC 3.0. IEEE Transactions on Broadcasting, 63 (1), 282-292.
https://doi.org/10.1109/TBC.2016.2630304.
GNU Operating System. (2018). GNU Lesser General Public License, version 2.1. Recuperado de
https://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
Gómez-Barquero, D., Douillard, C., Moss, P., & Mignone, V. (2014). DVB-NGH: The next generation of digital broadcast services to handheld devices. IEEE Transactions on Broadcasting, 60(2), 246-257. https://doi.org/10.1109/TBC.2014.2313073.
Hartung, F., Horn, U., Huschke, J., Kampmann, M., Lohmar, T., & Lundevall, M. (2007). Delivery of broadcast services in 3G networks. IEEE Transactions on Broadcasting, 53(1), 188-199.
https://doi.org/10.1109/TBC.2007.891711.
Huschke, J., & Phan, M. (2013). An overview of the cellular broadcasting technology eMBMS in LTE. In D. Gomez-Barquero (Ed.) Next Generation Mobile Broadcasting (pp. 223-252). London: Taylor & Francis Group.
Institute of Telecommunications Vienna University of Technology. (2016). LTE Simulators LTE-A Link Level Simulator Documentation, V1.4 Q2. Recuperado de http://www.nt.tuwien.ac.at/ltesimulator.
Mehlführer, C., Wrulich, M., Ikuno, J. C., Bosanska, D., & Rupp, M. (2009). Simulating the long-term evolution physical layer. In 17th European signal processing conference (EUSIPCO 2009) (pp. 1471-1478). Glasgow, Scotland https://publik.tuwien.ac.at/files/PubDat_175708.pdf
Montalban, J., Rong, B., Wu, Y., Zhang, L., Angueira, P., & Velez, M. (2013). Cloud transmission frequency domain cancellation. In IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB) (pp. 1-4). London. https://doi.org/ 10.1109/BMSB.2013.6621769.
Montalban, J., Zhang, L., Gil, U., Wu, Y., Angulo, I., Salehian, K., ... & Angueira, P. (2014). Cloud transmission: System performance and application scenarios. IEEE Transactions on Broadcasting, 60(2), 170-184.
https://doi.org/10.1109/TBC.2014.2304153.
Open Source Intitiative. (n. d.). The MIT License. Recuperado de
https://opensource.org/licenses/MIT.
Park, S. I., Lee, J. Y., Myoung, S., Zhang, L., Wu, Y., Montalbán, J., ... & Hur, N. (2016). Low complexity layered division multiplexing for ATSC 3.0. IEEE Transactions on Broadcasting, 62(1), 233-243. https://doi.org/10.1109/TBC.2015.2492459.
Park, S., Lee, J., Myoung, S., Zhang, L., Wu, Y., Montalbán, J., ... & Kim, J. (2015). Low complexity layered division multiplexing for ATSC 3.0. IEEE Transactions on broadcasting, 62(1), 233-243.
https://doi.org/10.1109/TBC.2015.2492459.
Rupp, M., Schwarz, S., & Taranetz, M. (2016). The Vienna LTE-advanced simulators. Singapore: Springer. Recuperado de https://link.springer.com/book/10.1007%2F978-981-10-0617-3.
Wu, Y., Rong, B., Salehian, K., & Gagnon, G. (2012). Cloud transmission: A new spectrum-reuse friendly digital terrestrial broadcasting transmission system. IEEE Transactions on Broadcasting, 58(3), 329-337. https://doi.org/10.1109/TBC.2012.2199598.
Zhang, L., Li, W., Wu, Y., Wang, X., Park, S. I., Kim, H. M., & Montalban, J. (2016). Layered-division-multiplexing: Theory and practice. IEEE Transactions on Broadcasting, 62(1), 216-232.