Controlador PD-Difuso para seguimiento de pared de un robot móvil: validación experimental
DOI:
https://doi.org/10.37135/unach.ns.001.04.05Palabras clave:
Controlador difuso, controlador PD, robot móvil, seguimiento de paredResumen
Este artículo presenta un controlador Fuzzy-PD para resolver el problema de seguimiento de pared a través de un robot móvil. El desempeño del controlador propuesto es comparado con un controlador clásico PD a través del análisis del índice de la integral del error cuadrático (ISE) y el índice de variación total de la acción de control (TV). Para el diseño del controlador Fuzzy-PD, se consideró la distancia que existe entre el robot móvil y la pared la cual es medida a través de un sensor ultrasónico que tiene el robot. En este trabajo se realizaron dos pruebas con el objetivo de mostrar la efectividad que posee cada controlador, un cambio de referencia de la distancia de seguimiento y el seguimiento de una pared desconocida. Los controladores fueron sintonizados a través del algoritmo de optimización por enjambre de partículas (PSO) e implementados en la plataforma DaNI 2.0 mediante el uso del software LabView Robotics.
Descargas
Referencias
Al-Mutib, K., Abdessemed, F., Faisal, M., Ramdane, H., Alsulaiman, M., & Bencherif, M. (2016). Obstacle avoidance using wall-following strategy for indoor mobile robots. In Robotics and Manufacturing Automation (ROMA), 2016 2nd IEEE International Symposium on, pp. 1–6. IEEE: Ipoh, Malaysia.
Aljanaideh, K., & Demirli, K. (2010). Gain scheduling fuzzy logic controller for a wall-following mobile robot. In Fuzzy Information Processing Society (NAFIPS), 2010 Annual Meeting of the North American, pp. 1–6. IEEE: Toronto, Canada.
Biswas, P., Maiti, R., Kolay, A., Sharma, K. D., & Sarkar, G. (2014). Pso based pid controller design for twin rotor mimo system. Proceedings of The 2014 International Conference on Control, Instrumentation, Energy and Communication (CIEC), pp. 56–60.
Browne, A. F., & Conrad, J. M. (2017). A versatile approach for teaching autonomous robot control to multi-disciplinary undergraduate and graduate students. IEEE Access, 6, 25060–25065.
Chen, C., Du, H., & Lin, S. (2017). Mobile robot wall-following control by improved artificial bee colony algorithm to design a compensatory fuzzy logic controller. In Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), 2017 14th International Conference on, pp. 856–859. IEEE: Phuket, Thailand.
Chung, T. L., Bui, T. H., Kim, S. B., Oh, M. S., & Nguyen, T. T. (2004). Wall-following control of a two-wheeled mobile robot. KSME international journal, 18(8), 1288–1296
Desouky, S. F., & Schwartz, H. M. (2009). Genetic based fuzzy logic controller for a wall-following mobile robot. In American Control Conference, 2009. ACC’09., pp. 3555–3560. IEEE: St. Louis, USA.
Fahmizal, & Kuo, C. (2013). Development of a fuzzy logic wall following controller for steering mobile robots. In 2013 International Conference on Fuzzy Theory and Its Applications (iFUZZY), pp. 7–12. IEEE: Taipei, Taiwan.
Ghosh, A., Sen, S., & Dey, C. (2015). Design and real-time implementation of a fuzzy pi controller on a servo speed control application. In Signal Processing and Integrated Networks (SPIN), 2015 2nd International Conference on, pp. 384–387. IEEE: Noida, India.
Klan, P., & Gorez, R. (2008). Pi controller design for actuator preservation. IFAC Proceedings Volumes, 41(2), 5820–5824.
Li, X., & Wang, D. (2015). Behavior-based mamdani fuzzy controller for mobile robot wall-following. In Control, Automation and Robotics (ICCAR), 2015 International Conference on, pp. 78–81. IEEE:Singapore.
Noureddine, B., Djamel, B., & Boudjema, F. (2013). Tuning fuzzy fractional order pid sliding-mode controller using pso algorithm for nonlinear systems. In 3rd International Conference on Systems and Control, pp. 797–803. IEEE: Algiers, Algeria.
Salem, F. A. (2013). Kinematics and dynamic models and control for differential drive mobile robots. Int. J. Current Eng. Technol, 3, 253–263.
Van Turennout, P., & Honderd (1992). Wall-following control of a mobile robot. In Robotics and Automation, 1992. Proceedings., 1992 IEEE International Conference on, pp. 280–285. IEEE: Nice, France.
Villacres, J., Herrera, M., Sotomayor, N., & Camacho, O. (2017). A fuzzy sliding mode controller from a reduced order model: A mobile robot experimental application. In 2017 4th International Conference on Control, Decision and Information Technologies (CoDIT), pp. 0674–0678. IEEE: Barcelona, Spain.
Xue, H., Bai, Y., Hu, H., Xu, T., & Liang, H. (2019). A novel hybrid model based on tviw-pso-gsa algorithm and support vector machine for classification problems. IEEE Access, 7, 27789–27801.
Publicado
Versiones
- 2021-05-20 (2)
- 2019-12-10 (1)