Nutrient contribution due to litterfall in Tectona grandis (Teak) plantations in drought periods

Authors

DOI:

https://doi.org/10.37135/ns.01.05.02

Keywords:

Dynamics of leaf fall, leaf decomposition, water deficit

Abstract

This work's objective was to study the leaf fall dynamics, its contribution of macronutrients in the drought period, and its relationship with the leaves' nutrients in the trees of Teak (Tectona grandis) at different times during the drought period. We used a randomized block design with four replications to evaluate soil texture, the soil moisture content in the dry period, leaf litterfall, and fresh leaf collection from selected trees for subsequent macro-element analysis. The results show that the soil's water content had dropped from 40% to 22% by the end of the drought. This decrease caused the fall of more than 95% of the leaves. The nutrient contributions in decreasing order were: Ca > N > K > P > Mg and were 181.32; 88.4; 46.7; 8.96; 6.46 kg/ha, respectively. In the seven-month dry period, the leaf drop was 8 t / ha. Nutrients N and P were mobilized from the leaves to other parts of the plant during the first five months of the dry period, demonstrating greater utilization efficiency. Based on the fertilization recommendations for Teak, the contribution of nutrients through its litter and nutrient contents in the soil, it is recommended that only N and K fertilization be carried out in the area under study.

Downloads

Download data is not yet available.

References

Allen, C., D., Macalady, A., K., Chenchouni, H., Bachelet, D., & Mcdowell, N. (2010), A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests, Forest Ecology and Management, Elsevier, 259 (4), p, 660 - p, 684,

Alvarado, A. (2009) Nutrición y fertilización de Tectona grandis Linn,f En: Nutrición y fertilización Forestal en regiones tropicales Alvarado A, Raigosa J, (eds,), Centro de investigaciones Agronómicas, Universidad de Costa Rica 419 p

Boley D., Drew, A., & Andrus R. (2009) Effects of active pasture, teak (Tectona grandis) and mixed native plantations on soil chemistry in Costa Rica. Forest Ecology and Management 257: 2254–2261

Creutzig, F., Roy, J., Lamb, WF & et al. (17 autores más) (2018) Towards demand-side solutions for mitigating climate change, Nature Climate Change, 8 (4): 268-271.

De Deus Rosa, T.; Lacerda Matos Pereira S. W.; & Gonçalves da Silva, R. (2015) concentração e acúmulo de nutrientes em povoamentos de Teca no estado de mato grosso, Brasil CERNE, 21 (1): 51-57

Engelbrecht, B., M., J. (2001), Drought resistane in seedlings of 28 tropical woody plant species. Euro-Workshop: Functional Groupings of Tropical Trees. Netherlands

Fernández-Moya, J., Murillo, Portuguez, E., Fallas, J., Ríos, V., Kottman, F., Verjans, J., Mata, R., & Alvarado, A. (2015). Nutrient accumulation and export in teak (Tectona grandis L.f.) plantations of Central America. iForest 8: 33-44

Garau, A., M., Ghersa, C., M., Lemcoff, J., H. & Barañao J., J. (2009), Weeds in Eucalyptus globulus subsp, maidenii (F, Muell) establishment: Effects of competition on sapling growth and survivorship, New Forests 37: 251-264

Hasselquist, N., J., Allen, M., F., & Santiago J. (2010), Water relations of evergreen and drought-deciduous trees along a seasonally dry tropical forest chronosequence L., S., Oecologia 164: 881, https://doi,org/10,1007/s00442-010-1725

Henríquez, C., Bertsch, F., & Salas, R. (1998) La fertilidad de suelos: Manual de laboratorio, San José, CR: Asociación Costarricense de la Ciencia del Suelo, 64 p,

Jaimez R., & Franco W. (1999) Producción de hojarasaca, aporte de nutrientes y descomposición en sistemas agroforestales de cacao frutales AGROTROPICA 11 (1):1-8.

Johnson D., & Turner J. (2019) Tamm Review: Nutrient cycling in forests: A historical look and newer developments, Forest Ecology and Management 444 : 344-373

Klein, V. (2008) Física do Solo, Paso Fundo, Brasil, Editora Universitaria, 212p

Kollert, W. & Cherubini, L. (2012). Teak resources and market assessment 2010. FAO Planted Forests and Trees Working Paper FP/47/E, Rome

Lugo, A., Abelleira Martínez, O., Medina, E., Aymard, G. & Heartsill, T. (2020). Novelty in the tropical forests
of the 21st century. Advances in Ecological Research, 62 https://doi.org/10.1016/bs.aecr.2020.01.008

Mollinedo Garcia M., Herrera, M., & Munoz, F. (2016), Caracterización del crecimiento de plantaciones jóvenes de Teca (Tectona grandis Linn f,) y estimación de curvas de índice de sitio en el área septentrional de la República de Guatemala, Madera bosques vol, 22 (2): 89103, http://dx,doi,org/10,21829/myb,2016,2221327,

Murphy, P., G., & Lugo, A., E. (1986), Ecology of tropical dry forest, Annual Review, Ecology Systematic, 17, 67-88.

Ojo, T., O., Kadebab, S., & Kayodec, J. (2010), Litter Mass and Nutrient Dynamics in a Transformed Rainforest Ecosystem in Southwestern Nigeria, Bangladesh, Journal Science, India, Research, 45(4), 351-358.

Oosterveld, M. & Chang, C. (1980) Empirical relations between laboratory determinations of soil texture and moisture retention. Canadian Agricultural Engineering 22: 149-151

Prescott, C. E., Zabek, L. M., Staley C., L. & Kabzems R. (2002), Decomposition of broadleaf and needle litter in forests of British Columbia: influences of litter type, forest type and litter mixtures, Canadian, Journal, Forest, Research, 30:1742–1750,

Ramachandra, H. & Proctor J. (2007) Fine litterfall and its nutrients in plantations of acacia auricuufobmis, eucalyptus tereticornis and tectona grandis in the chikmagalur district of the western ghats, india, Journal of Tropical Forest Science 10 (1) 73-85

Raigosa, A. Y. 2009. Nutrición y Fertilización Forestal en Regiones Tropicales. San Jose, Costa Rica: centro de investigaciones de costa rica.

Sánchez, C., Lama, D., & Suatunce P. (2007), Hojas caídas y aporte de nutrientes de 10 especies forestales tropicales, Revista Ciencia y Tecnología 1: 73-78,

Sánchez-Salguero, R., N. (2012), Vulnerabilidad frente a la sequía de repoblaciones de dos especies de pinos en su límite meridional en Europa, ECOSISTEMAS, Doi: 10,7818/ECOS,2012,21-3,05,

Sankaran V. (1993). Decomposition of leaf litter of albizia (Paraserianthes falcataria), eucalypt (Eucalyptus tereticornis) and teak (Tectona grandis) in Kerala, India. Forest Ecology and Management 56: 225-242

Thaiutsa, B., & Granger O. (2015), “Climate and the Decomposition rate of–Tropical Forest Litter,” Food and Agriculture Organization of the United Nations (FAO), Consultado en julio, http://www,fao,org/docrep/n6845e/n6845e05,htm

Tyree M. T., Vargas G., Engelbrecht B. M. J., & Kursar T. A. (2002), Drought until death do us part: a case study of the desiccation-tolerance of a tropical moist forest seedling-tree, Licania platypus (Hemsl,) Fritsch, Journal of Experimental Botany 53: 2239–2247

Tyree, M., T., Engelbrecht, B., M., Vargas, G., & T, A., Kursar, (2003), Desiccation tolerance of five tropical seedlings in Panama: Relationship to a field assessment of drought performance, Plant Physiology, 132: 1439-1447

Published

2020-06-01

Issue

Section

Research Articles and Reviews

How to Cite

Nutrient contribution due to litterfall in Tectona grandis (Teak) plantations in drought periods. (2020). Novasinergia, ISSN 2631-2654, 3(1), 17-26. https://doi.org/10.37135/ns.01.05.02