Atractores en funciones lineales crecientes por parte en la recta real
DOI:
https://doi.org/10.37135/ns.01.08.03Palabras clave:
Atractor topológico,, Atractor global, Funciones lineales por parte, Transitividad, medidas invariantes ergódicasResumen
Las funciones lineales por parte aparecen como modelos matemáticos para describir sistemas provenientes de la ingeniería eléctrica, ciencias físicas y economía, recientemente también aparece en modelos de la actividad neuronal. Se considera una familia a 4 parámetros de funciones lineales crecientes por parte sobre la recta real usando la teoría de funciones continua crecientes por parte sobre intervalos compactos para estudiar la existencia de conjuntos atractores y describir la dinámica del atractor, verificando la existencia de órbitas periódicas, transitividad y la existencia de medidas ergódicas invariantes. Se demuestra específicamente los diferentes valores del parámetro donde la familia exhibe un intervalo atractor. Se prueba las condiciones necesarias y suficientes para que el conjunto atractor sea globalmente atractor, de hecho, en este caso se prueba que la dinámica de dicho atractor se comporta como la dinámica de la rotación de Poincaré del circulo unitario. También, se describe bajo qué condiciones en los parámetros la familia exhibe un atractor topológico. Finalmente se prueba la existencia de medidas invariantes ergódicas absolutamente continua a la medida de Lebesgue asociado a la familia restricta al atractor, inclusive se prueba el caso en que la medida es equivalente a la medida de Lebesgue.
Descargas
Referencias
Avrutin, V., Gardini, L., Schanz, M., & Sushko, I. (2014). Bifurcations of Chaotic Attractors in One-Dimensional Piecewise Smooth Maps. Http://Dx.Doi.Org/10.1142/S0218127414400124, 24(8).
Avrutin, V., Schanz, M., & Banerjee, S. (2006). Multi-parametric bifurcations in a piecewise–linear discontinuous map. Nonlinearity, 19(8), 1875. https://doi.org/10.1088/0951-7715/19/8/007
Banerjee, S., & Verghese, G. C. (2001). Nonlinear phenomena in power electronics : attractors, bifurcations, chaos, and nonlinear control. 441.
Barrientos, P. G. (2015). A Family of Eventually Expanding Piecewise Linear Maps of the Interval. The American Mathematical Monthly, 122(7), 674–680. https://doi.org/10.4169/amer.math.monthly.122.7.674
Belyaev, A., & Ryazanova, T. (2019). Stochastic sensitivity of attractors for a piecewise smooth neuron model. Https://Doi.Org/10.1080/10236198.2019.1678596, 25(9–10), 1468–1487. https://doi.org/10.1080/10236198.2019.1678596
Boyarsky, A., & Góra, P. (1997). Laws of Chaos: Invariant Measures and Dynamical Systems in One Dimension. 420. http://www.amazon.co.uk/Laws-Chaos-Invariant-Probability-Applications/dp/0817640037
Choi, Y. (2004). Attractors from one dimensional lorenz-like maps. Discrete and Continuous Dynamical Systems, 11(2–3), 715–730. https://doi.org/10.3934/DCDS.2004.11.715
Coelho, Z., Lopes, A., & da Rocha, L. F. (1995). Absolutely continuous invariant measures for a class of affine interval exchange maps. Proceedings of the American Mathematical Society, 123(11), 3533–3533. https://doi.org/10.1090/s0002-9939-1995-1322918-6
Du, R. H., Wang, S. J., Jin, T., & Qu, S. X. (2018). Phase order in one-dimensional piecewise linear discontinuous map. Chinese Physics B, 27(10), 100502. https://doi.org/10.1088/1674-1056/27/10/100502
Eslami, P., & Góra, P. (2011). On eventually expanding maps of the interval. American Mathematical Monthly, 118(7), 629–635. https://doi.org/10.4169/amer.math.monthly.118.07.629
Glendinning, P., & Jeffrey, M. R. (2019). An Introduction to Piecewise Smooth Dynamics. http://link.springer.com/10.1007/978-3-030-23689-2
GÓRA, P. (2009). Invariant densities for piecewise linear maps of the unit interval. Ergodic Theory and Dynamical Systems, 29(5), 1549–1583. https://doi.org/10.1017/S0143385708000801
Jain, P., & Banerjee, S. (2003). Border-collision bifurcations in one-dimensional discontinuous maps. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 13(11), 3341–3351. https://doi.org/10.1142/S0218127403008533
Milnor, J. (1985). On the concept of attractor. Communications in Mathematical Physics, 99(2), 177–195. https://doi.org/10.1007/BF01212280
Morales, C. A., & Pujals, E. R. (1997). Singular strange attractors on the boundary of Morse-Smale systems. Annales Scientifiques de l’École Normale Supérieure, 30(6), 693–717. https://doi.org/10.1016/S0012-9593(97)89936-3
NUSSE, H. E., & YORKE, J. A. (1995). BORDER-COLLISION BIFURCATIONS FOR PIECEWISE SMOOTH ONE-DIMENSIONAL MAPS. Http://Dx.Doi.Org/10.1142/S0218127495000156, 05(01), 189–207. https://doi.org/10.1142/S0218127495000156
Parry, W. (1964). Representations for real numbers. Acta Mathematica Academiae Scientiarum Hungaricae, 15(1–2), 95–105. https://doi.org/10.1007/BF01897025
Parry, William. (1979). The lorenz attractor and a related population model. Ergodic Theory. Lecture Notes in Mathematics, 729, 169–187. https://doi.org/10.1007/BFB0063293
Rajpathak, B., Pillai, H. K., & Bandyopadhyay, S. (2012). Analysis of stable periodic orbits in the one dimensional linear piecewise-smooth discontinuous map. Chaos (Woodbury, N.Y.), 22(3), 033126. https://doi.org/10.1063/1.4740061
Rajpathak, B., Pillai, H. K., & Bandyopadhyay, S. (2015). Analysis of unstable periodic orbits and chaotic orbits in the one-dimensional linear piecewise-smooth discontinuous map. Chaos, 25(10). https://doi.org/10.1063/1.4929382
Rényi, A. (1957). Representations for real numbers and their ergodic properties. Acta Mathematica Academiae Scientiarum Hungaricae, 8(3–4), 477–493. https://doi.org/10.1007/BF02020331
Tramontana, F., & Gardini, L. (2011). Border collision bifurcations in discontinuous one-dimensional linear-hyperbolic maps.
Communications in Nonlinear Science and Numerical Simulation, 16(3), 1414–1423. https://doi.org/10.1016/J.CNSNS.2010.06.012
Viana, M., & Oliveira, K. (2016). Foundations of Ergodic Theory. Foundations of Ergodic Theory. https://doi.org/10.1017/CBO9781316422601
Wilkinson, K. M. (1974). Ergodic properties of certain linear mod one transformations. Advances in Math., 14, 64–72.