Impacto del tiempo de backoff en el rendimiento de IoT celular en entornos de comunicación masiva
DOI:
https://doi.org/10.37135/ns.01.09.02Palabras clave:
tiempo de backoff, redes IoT celular, comunicaciones tipo máquina, métricas de rendimiento, canal de acceso aleatorioResumen
Este artículo evalúa el impacto del tiempo de backoff a través de la configuración del Indicador de Backoff (BI) en el canal de acceso aleatorio (RACH) bajo diferentes escenarios de tráfico masivo considerando métricas de rendimiento de la red como la probabilidad de acceso satisfactorio, el retardo en el acceso y el número promedio de transmisiones de preámbulo. Se desarrolló un modelo de simulación por eventos discretos del procedimiento de acceso aleatorio basado en contención empleando el software MATLAB. Con base a los resultados obtenidos, se caracterizó un rango óptimo de los valores de BI para cada escenario a través de diferentes condiciones de fiabilidad. Se observó que con una configuración adecuada de los parámetros del RACH, el rendimiento de la red sistema puede alcanzar una probabilidad de acceso satisfactorio mayor al 85% con un aumento moderado en el retardo de acceso. Se concluyó que la modificación dinámica del tiempo de backoff puede aliviar la congestión del canal en aplicaciones tolerantes a retardos con tráfico masivo.
Descargas
Referencias
GPP, TR 37.868. (2011). Study on RAN Improvements for Machine-type Communications. V11.00.0. Retrieved from https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2630
GPP, TS 36.211. (2020). Physical channels and modulation. V16.3.0. Retrieved from https://www.etsi.org/deliver/etsi_ts/136200_136299/136211/16.03.00_60/ts_136211v160300p.pdf
GPP, TS 36.321. (2017). Medium Access Control (MAC) Protocol Specification. V14.4.0. Retrieved from https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2437
Cisco. (2020). Cisco visual networking index (VNI). Retrieved from Cisco Annual Internet Report (2018–2023) White Paper: https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
Dakhilallah, H., Othman, M., Kamariah, N., & Mohd, Z. (2020). Dynamic Backoff Collision Resolution for Massive M2M Random Access in Cellular IoT Networks. IEEE Access, 8, 201345 - 201349. https://doi.org/10.1109/ACCESS.2020.3036398
Dutkiewicz, E., Costa, X., Kovacs, I., & Mueck, M. (2017). Massive machine-type communications. IEEE Network, 31(6), 6-7. https://doi.org/10.1109/MNET.2017.8120237
Fan, J., Gao, F., Wang, W. S., & &. Dong, G. (2008). Performance analysis of an adaptive backoff scheme for Ad Hoc networks. 8th International Conference on Computer and Information Technology (pp. 624-629). IEEE. https://doi.org/10.1109/CIT.2008.4594747
Guo, F. Y. (2021). Enabling massive IoT toward 6G: A comprehensive survey. IEEE Internet of Things Journal, 8(15). https://doi.org/10.1109/JIOT.2021.3063686
Gursu, H. M., Vilgelm, M., Kellerer, W., & Reisslein, M. (2017). Hybrid Collision Avoidance-Tree Resolution for M2M Random Access. IEEE Transactions on Aerospace and Electronic Systems, 53(4), 1974-1987. https://doi.org/10.1109/TAES.2017.2677839
Kim, J. S., Lee, S., & Chung, M. Y. (2018). Time-division random-access scheme based on coverage level for cellular internet-of-things in 3GPP networks. Pervasive and Mobile Computing, 44, 45-57. https://doi.org/10.1016/j.pmcj.2018.01.005
Kwak, B. J., Song, N. O., & Miller, L. E. (2005). Performance analysis of exponential backoff. IEEE/ACM transactions on networking, 13(2), 343-355. https://doi.org/10.1109/TNET.2005.845533
Ouaissa, M., Benmoussa, M., Rhattoy, A., Lahmer, M., & Chana, I. (2016). Performance analysis of random access mechanisms for machine type communications in LTE networks. 2016 International Conference on Advanced Communication Systems and Information Security (ACOSIS), 1-6. https://doi.org/10.1109/ACOSIS.2016.7843934
Pacheco-Paramo, D., & Tello-Oquendo, L. (2020). Delay-aware dynamic access control for mMTC in wireless networks using deep reinforcement learning. Computer Networks, 182. https://doi.org/10.1016/j.comnet.2020.107493
Sahoo, B., Chou, C., Weng, C., & Wei, H. (2018). Enabling millimeter-wave 5G networks for massive IoT applications: a closer look at the issues impacting millimeter-waves in consumer devices under the 5G framework. IEEE Consumer Electronics Magazine, 8(1), pp. 49-54. https://doi.org/10.1109/MCE.2018.2868111
Seo, J. B., & Leung, V. C. (2011). Design and analysis of backoff algorithms for random access channels in UMTS-LTE and IEEE 802.16 systems. IEEE Transactions on Vehicular Technology, 60(8), 3975-3989. https://doi.org/10.1109/TVT.2011.2166569
Tello-Oquendo, L., Pla, V., Leyva, I., Martinez, J., Casares, V., & Guijarro, L. (2019b). Efficient random access channel evaluation and load estimation in LTE-A with massive MTC. IEEE Transactions on Vehicular Technology, 68(2), 1998-2002. https://doi.org/10.1109/TVT.2018.2885333
Tello-Oquendo, L., Leyva, I., Pla, V., Martinez-Bauset, J., Vidal, J. R., Casares, V., & Guijarro, L. (2018a). Performance Analysis and Optimal Access Class Barring Parameter Configuration in LTE-A Networks With Massive M2M Traffic. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 67(4), pp. 3505-3519. https://doi.org/10.1109/TVT.2017.2776868
Tello-Oquendo, L., Lin, S.-C., Akyildiz, I., & Pla, V. (2019a). Software-Defined architecture for QoS-Aware IoT deployments in 5G systems. Ad Hoc Networks, 93(101911). https://doi.org/10.1016/j.adhoc.2019.101911
Tello-Oquendo, L., Pacheco-Paramo, D., Pla, V., & Martinez-Bauset, J. (2018b). Reinforcement learning-based ACB in LTE-A networks for handling massive M2M and H2H communications. International Conference on Communications (ICC). IEEE. https://doi.org/10.1109/ICC.2018.8422167
Vidal, J. R., Tello-Oquendo, L., Pla, V., & Guijarro, L. (2019). Performance Study and Enhancement of Access Barring for Massive Machine-Type Communications. IEEE Access, 7, 63745-63759. https://doi.org/10.1109/ACCESS.2019.2917618
Zhang, Z., & Liu, Y. J. (1993). Comments on "The effect of capture on performance of multichannel slotted ALOHA systems". IEEE Transactions on Communications, 41(10), 1433-1435. https://doi.org/10.1109/26.237876