Vaska's complex and the organometallic chemistry
DOI:
https://doi.org/10.37135/ns.01.05.10Keywords:
Catalysts, organoiridium, organometallic chemistry, Vaska's complexAbstract
In 1961, Lauri Vaska and John W. DiLuzio published a seminal work in the area of organoiridium complexes, the synthesis, and characterization of trans-chlorocarbonylbis(triphenylphosphine-κP)iridium(I) the trans-[IrCl(CO)(PPh3)2]. This compound showed activity in the reaction of catalytic hydrogenation of olefins and acetylenes. The trans-[IrCl(CO)(PPh3)2], named 'Vaska's complex,' offers options in organometallic and organic chemistry due to its applications in catalytic reactions that allow transforming functional groups, the starting point for the synthesis of new pharmaceutical substances technological and industrial interest. A review based on the scientific literature confirms the Vaska complex's importance in several homogeneous, biphasic, and asymmetric catalysis reactions. The possibility of incorporating new ligands generates a series of novel analogous complexes of the type trans-[MCl(CO)L2] (M = Ir(I) or Rh(I), L = complex organophosphorus ligands). These new complexes have applications in materials science, nanochemistry, and biomedicine. However, sixty years after the discovery of trans-[IrCl(CO)(PPh3)2], some possibilities remain to be explored. Moreover, expectations are still being generated in the research and development of organoiridium compounds.
Downloads
References
Absi-Halabi, M., Atwood, J. D., Forbus, N.P., & Brown, T. L. (1980). The mechanism of substitution of dicobalt octacarbonyl. Journal of the American Chemical Society, 102(20), 6248-6254.
Ahluwalia, V. K. & Chopra, M. (2008). Medicinal chemistry. New Delhi, India: CRC.
Antiñolo, A., Fonseca, I., Ortiz, A., Rosales, M., Sanz-Aparicio, J., Terreros, P., & Torrens, H. (1999). Iridium-fluorobenzenethiolato complexes: crystal structures of [Ir(SC6F5)(CO)(PPh3)2], [Ir3(μ-SC6F5)3(μ-CO)(CO)4(PPh3)2] and [Ir(SC6F5)(η-O2)(CO)(PPh3)2]. Polyhedron, 18(7), 959-968.
Aranguren, J. N., Contreras, R. R. (2010). Química Bioorganometálica en perspectiva. Revista de la Facultad de Farmacia, 52(2), 22-33.
Balch, A.L., Costa, D.A., Lee, J.W., Noll, B.C., & Olmstead, M. M. (1994). Directing Effects in a Fullerene Epoxide Addition. Formation and Structural Characterization of (η2-C60O)Ir(CO)Cl(P(C6H5)3)2. Inorganic Chemistry, 33(10), 2071-2072.
Balch, A. L., Costa, D. A., Noll, B. C., & Olmstead, M. M. (1996). Developing Reagents to Orient Fullerene Derivatives. Formation and Structural Characterization of (η2-C60O)Ir(CO)Cl(As(C6H5)3)2. Inorganic Chemistry, 35(2), 458-462.
Bandini, A. L., Banditelli, G., Bonati, F., Minghetti, G., Demartin, F., & Manassero, M. (1984). A Series of monohapto pyrazolates of iridium(I) and iridium(III). Journal of Organometallic Chemistry, 269(1), 91-105.
Banerjee, S., & Wong, S. S. (2002). Functionalization of Carbon Nanotubes with a Metal-Containing Molecular Complex. Nano Letters, 2(1), 49-53.
Beattie, J. K., Masters, A. F., & Meyer, J. T. (1995). Nickel carbonyl cluster complexes. Polyhedron, 14(7), 829-868.
Beller, M., & Blaser, H. U. (2012). Organometallics as catalysts in the fine chemical industry. Heidelberg. Germany: Springer.
Bellucco, U., Croatto, U., Uguagliati, P., & Pietropaolo, R. (1967). Electrophilic attack upon trans-Bis(triethylphosphine)diphenylplatinum. Inorganic Chemistry, 6(4), 718-721.
Böttcher, H. C., Graf, M., & Merzweiler, K. (1997). Iridium complexes with secondary phosphines: synthesis and X-ray crystal structure of [IrCl(Bu2tPH)3]. Polyhedron, 16(2), 341-343
Böttcher, H. C., Graf, M., & Merzweiler, K. (1996). Synthesis and X-ray crystal structures of phosphido-bridge heterobimetallic complexes: [FeIr(μ-CO)(CO)4(μ-PtBu2)(tBu2PH)] and [CoIr(CO)5(μ-H)(μ-PtBu2)(tBu2PH)]. Journal of Organometallic Chemistry, 525(1-2), 191-197.
Brady, R., De Camp, W. H., Flynn, B. R., Schneider, M. L., Scott, J. D., Vaska, L., & Werneke, M. F. (1975). Steric effects inhibiting reactivity. Crystal and molecular structure, spectra, and chemistry of trans-chlorocarbonylbis(tri-o-tolylphosphine)iridium(I), and related complexes. Inorganic Chemistry, 14(11), 2669-2675.
Burk, M. J., McGrath, M. P., Wheeler, R., & Crabtree, R. H. (1988). The origin of the directing effect in hydrogen addition to square-planar d8 complexes. Journal of the American Chemical Society, 110(15), 5034-5039.
Calderazzo, F. (2005) Carbonyl Complexes of the Transition Metals. In: King, B. K. (Ed.). Encyclopedia of Inorganic Chemistry. New York: Wiley.
Churchill, R. M., Fettinger, J. C., Buttrey, L. A., Barkan, M. D., & Thompson, J. S. (1988). An accurate X-ray diffraction study of Vaska's compound, trans-IrCl(CO)(PPh3)2, including resolution of the carbonyl/chloride disorder problem. Journal of Organometallic Chemistry, 340(2), 257-266.
Collman, J. P., & Kang, J. W. (1967). Acetylene Complexes of Iridium and Rhodium. Journal of the American Chemical Society, 89(4), 844-851.
Contreras R. R. (2020). Catálisis homogénea con metales de transición. Transformando el mundo de la química. Parte 1. Mérida: Universidad de Los Andes.
Contreras, R. R., Urbina-Gutiérrez, J.A., & Rodríguez-Sulbarán, P.J. (2020). El catalizador de Crabtree. Una breve revisión. Revista Ciencia e Ingeniería, 41(1): 3-14.
Contreras, R. R., Urbina-Gutiérrez, J.A., Aranguren, J.N. (2018). Compuestos Organometálicos y su potencial terapéutico en el tratamiento del cáncer. Una breve revision. NOVASINERGIA, 1, 14-22.
Contreras, R. R., Cardozo, E., & García-Molina, L. O. J. (2017). Transformando la catálisis homogénea: cincuenta años del catalizador de Wilkinson. Avances en Química, 12(2-3): 61-67.
Contreras R. R., & Cardozo, E. (2015). Conceptos de nanoquímica. Capítulo 1, 1-28. En: Nanotecnología: Fundamentos y Aplicaciones, Lárez-Velásquez, C., Koteich-Khatib, S., & López-González, S. (Eds). Mérida: Departamento de Química - ULA.
Contreras, R. R. (2014). Mérida: Ediciones del CDCHTA-ULA.
Contreras, R. R., Aranguren, J. N., Bellandi, F., Gutiérrez, A. (2012). Una nueva generación de fármacos a base de compuestos organometálicos. CIENCIA, 20(Número Especial), 15-24.
Cotton, F. A., & Troup, J. M. (1974). Reactivity of diiron nonacarbonyl in tetrahydrofuran. I. Isolation and characterization of pyridinetetracarbonyliron and pyrazinetetracarbonyliron. Journal of the American Chemical Society, 96(11), 3438-3443.
Cotton, F. A., Wilkinson, G., Murillo, C. A., & Bochmann, M. (1999). Advanced Inorganic Chemistry (6th ed.). New York: John Wiley & Sons, Inc.
Cotton, S. (2006). Lanthanide and actinide chemistry. Chichester: John Wiley.
Coville, N. J., Stolzenberg, A. M., & Muetterties, E. L. (1983). Mechanism of ligand substitution in dimanganese decacarbonyl. Journal of the American Chemical Society, 105(8), 2499-2500.
Crabtree, R. H. (2019). The organometallic chemistry of the transition metals (7th ed.). Hoboken: New Jersey: Wiley.
Dean, W. K. (1980). Reactions of Thiocarbamoyl compounds with Vaska complexes: mechanism and stereochemistry. Journal of Organometallic Chemistry, 190(4), 353-361.
Dickson, R. S. (1985). Homogenous catalysis with compounds of rhodium and iridium catalysis by metal complexes. Dordrecht, The Netherlands: Kluwer Academic
Domínguez, J. M. (coordinador editorial). (2004). El amanecer de la Catálisis en Iberoamérica. México: Instituto Mexicano de Petróleo y CYTED.
Dunbar, K. R., & Haefner, S. C. (1992). Crystallographic disorder in the orthorhombic form of carbonyl(chlorobis(triphenylphosphine)rhodium: relevance to the reported structure of the paramagnetic impurity in Wilkinson's catalyst. Inorganic Chemistry, 31(17), 3676-3679.
Dunbar, K. R., Haefner, S. C., Uzelmeier, C. E., & Howard, A. (1995). Chemistry of tris(2,4,6-trimethoxyphenyl)phosphine with rhodium(I) and iridium(I) olefin complexes. Inorganica Chimica Acta, 240(1-2), 527-534.
Dyson, P., & McIndoe, J. S. (2000). Transition metal carbonyl cluster chemistry. Amsterdam, the Netherlands: Gordon and Breach Science Publishers.
Eisenberg, R. (1991). Parahydrogen-induced polarization: a new spin on reactions with molecular hydrogen. Accounts of Chemical Research, 24(4), 110-116.
Ellis, J. E. (2003). Metal Carbonyl Anions: from [Fe(CO)4]2-to [Hf(CO)6]2- and Beyond†. Organometallics, 22(17), 3322-3338.
Feuer, H. (2008). Nitrile Oxides, Nitrones, and Nitronates in Organic Synthesis: Novel Strategies in Synthesis. Hoboken, NJ: John Wiley & Sons.
Fochi, G. (1999). Il segretto della chimica. Milán: Longanesi & C.
Franciò, G., Scopelliti, R., Arena, C. G., Bruno, G., Drommi, D., & Faraone, F. (1998). IrPd, IrHg, IrCu, and IrTl Binuclear Complexes Bridged by the Short-Bite Ligand 2-(Diphenylphosphino)pyridine. Catalytic Effect in the Hydroformylation of Styrene Due to the Monodentate P-Bonded 2-(Diphenylphosphino)pyridine Ligands oftrans-[Ir(CO)(Ph2PPy)2Cl]. Organometallics, 17(3), 338-347.
Gabriel, P., Gregory, A. W., & Dixon, D. J. (2019). Iridium-Catalyzed Aza-Spirocyclization of Indole-Tethered Amides: An Interrupted Pictet–Spengler Reaction. Organic Letters. 21(17), 6658-6662
Gal, A. W., Ambrosius, H. P. M. M., van der Ploeg, A. F. M. J., & Bosman, W. P. (1978). Bidentate, monodentate and bridging thiocarboxamido complexes of rhodium and iridium; the x-ray structure determination of [Ir(η2-SCNMe2)2(CO)(PPh3)]+ BF4-. Journal of Organometallic Chemistry, 149(1), 81-96.
Gansäuer, A., Otte, M., & Shi, L. (2011). Radical Cyclizations Terminated by Ir-Catalyzed Hydrogen Atom Transfer. Journal of the American Chemical Society, 133(3), 416-417.
Grobbelaar, E., Lötter, S., Visser, H. G., Conradie, J., & Purcell, W. (2009). Investigation of the electron density of iridium(I) Vaska-type complexes using DFT calculations and structural results: Structure of trans-carbonyl-chloro-bis(tricyclohexylphosphine)-iridium(I). Inorganica Chimica Acta, 362(11), 3949-3954.
Haque, N., Neumann, B., Roedel, J. N., & Lorenz, I. P. (2010). Synthesis, structures, and characterization of benzildiimine complexes of rhodium(III) and iridium(I). Inorganica Chimica Acta, 363(4), 723-728.
Harvey, J. (2018). Computational chemistry. Oxford, UK: Oxford University Press.
Haynes, A. (2007). Commercial Applications of Iridium Complexes in Homogeneous Catalysis. Comprehensive Organometallic Chemistry III, 427-444.
Hill, A. M., Levason, W., Preece, S. R., & Frampton, C. S. (1997). Rhodium(III) and iridium(III) complexes of the tetraarsine tris(o-dimethylarsinophenyl)arsine. Crystal structure of [Ir{(o-Me2AsC6H4)3As}(CO)Cl][BF4]2. Inorganica Chimica Acta, 254(1), 99-104.
Igartúa-Nieves, E., Rivera-Pagán, J. A., & Cortés-Figueroa, J. E. (2012). Electrochemical detection of C60-4 and C60- 5 species coordinated to Vaska's catalyst. Inorganic Chemistry Communications, 24(2012), 4-6.
Jacobsen, E. N. (2011). Comprehensive asymmetric catalysis. Berlin, DE: Springer.
James, B. R., & Memon, N. A. (1968). Kinetic study of iridium(I) complexes as homogeneous hydrogenation catalysts. Canadian Journal of Chemistry, 46(2), 217-223.
Janik, T. S., Bernard, K. A., Churchill, M. R., & Atwood, J. D. (1987). Reaction of alkenes with trans-MeOIr(CO)(PPh3)2. Crystal and molecular structure of the pentacoordinate alkoxy-alkene iridium(I) complex, MeOIr(CO)(PPh3)2(TCNE). Journal of Organometallic Chemistry, 323(2), 247-259.
Kirchmann, M., Fleischhauer, S., & Wesemann, L. (2008). Iridium Coordination Compounds of Stanna-closo-dodecaborate. Organometallics, 27(12), 2803-2808.
Kirss, R. U. (2013). Fifty years of Vaska's compound. Bulletin for the History of Chemistry, 38(1), 52-60.
Kovács, J., Todd, T. D., Reibenspies, J. H., & Darensbourg, D. J. (2000). Water-Soluble Organometallic Compounds. 9.1. Catalytic Hydrogenation and Selective Isomerization of Olefins by Water-Soluble Analogues of Vaska's Complex. Organometallics, 19(19), 3963-3969.
Lebel, H., & Ladjel, C. (2008). Iridium Complexes in Olefination Reactions. Organometallics, 27(11), 2676-2678.
Lebel, H., Ladjel, C., Bélanger-Gariépy, F., & Schaper, F. (2008). Redetermination of the O–O bond length in the dioxygen-adduct of Vaska's complex. Journal of Organometallic Chemistry, 693(16), 2645–2648.
Liu, Z., & Sadler, P. J. (2014). Organoiridium Complexes: Anticancer Agents and Catalysts. Accounts of Chemical Research, 47(4), 1174-1185.
Margarita, C., & Andersson, P. G. (2017). Evolution and Prospects of the Asymmetric Hydrogenation of Unfunctionalized Olefins. Journal of the American Chemical Society, 139(4), 1346-1356.
Matthes, J., Gründemann, S., Buntkowsky, G., Chaudret, B., & Limbach, H.H. (2013). NMR Studies of the Reaction Path of the o-H2/p-H2 Spin Conversion Catalyzed by Vaska's Complex in the Solid State. Applied Magnetic Resonance, 44(1-2), 247-265.
Mercuri, F., & Sgamellotti, A. (2006). Functionalization of carbon nanotubes with Vaska's complex: A theoretical approach. Journal of Physical Chemistry B, 110(31), 15291-15294.
Mitchell, P. R., & Parish, R. V. (1969). The eighteen electron rule. Journal of Chemical Education, 46(12), 811.
Moers, F. G., De Jong, J. A. M., & Beaumont, P. M. H. (1973). Tricyclohexylphosphine complexes of rhodium(I), rhodium(II), iridium(I) and iridium(III). Journal of Inorganic and Nuclear Chemistry, 35(6), 1915-1920.
Montgomery, C. D. (2007). [Pi] π-Backbonding in Carbonyl Complexes and Carbon–Oxygen Stretching Frequencies: A Molecular Modeling Exercise. Journal of Chemical Education, 84(1), 102-105.
Muller, A., & Otto, S. (2011). trans-Carbonylchloridobis(ferrocenyldiphenylphosphane-κP)rhodium(I) dichloromethane monosolvate andtrans-carbonylchloridobis(ferrocenyldiphenylphosphane-κP)iridium(I) dichloromethane monosolvate. Acta Crystallographica Section C Crystal Structure Communications, 67(5), m165-m168.
Müller, T. E., Mingos, D. M. P., 1995, Determination of the Tolman cone angle from crystallographic parameters and a statistical analysis using the crystallographic data base. Transition Metal Chemistry, 20(6), 533-539.
Nakamoto, K. (2009). Infrared and Raman spectra of inorganic and coordination compounds (6th ed). Chichester, UK: John Wiley.
Pearson, R. G. (1997). Chemical hardness. Weinheim, DE: Wiley-VCH.
Parshall, G. W. (1992) Homogeneous catalysis: the applications and chemistry of catalysis by soluble transition metal complexes (2nd ed). New York, USA: Wiley.
Pelczar, E. M., Munro-Leighton, C., & Gagné, M. R. (2009). Oxidative Addition of Glycosylbromides totrans-Ir(PMe3)2(CO)Cl. Organometallics, 28(3), 663-665.
Restivo, R.J., Ferguson, G., Kelly, T.L., & Senoff, C.V. (1975). Metal-olefin complexes: Synthesis and molecular structure of trans-chloro(ethylene)bis(triphenylphosphine)iridium(I), IrCI(C2H4)(PPh3)2. Journal of Organometallic Chemistry, 90(1), 101–109.
Roodt, A., Otto, S., & Steyl, G. (2003). Structure and solution behaviour of rhodium(I) Vaska-type complexes for correlation of steric and electronic properties of tertiary phosphine ligands. Coordination Chemistry Reviews, 245(1-2), 121-137.
Rowlands, G. J. (2010). Radicals in organic synthesis: part 2. Tetrahedron, 66(9), 1593-1636.
Sánchez-Sánchez, K., Castillo-García, A. A., Cervantes-Vásquez, M., Ortiz-Pastrana, N., & Paz-Sandoval, M. A. (2019). Butadienesulfonyl iridium complexes with phosphine and carbonyl ligands. Journal of Organometallic Chemistry, 900, 120929.
Schliwa, M. (2003). Molecular Motors. Weinheim, DE: Wiley-VCH GmbH & Co. KGaA.
Schmid, G., Waser, R. & Krug, H. (2012). Nanotechnology. Weinheim, DE: Wiley-VCH.
Serp, P., Hernández, M., & Kalck, P. (1999). Dimethylformamide as a convenient CO source for the facile preparation of rhodium-, iridium- or ruthenium-chlorocarbonyl complexes directly from RhCl3·3H2O, IrCl3·3H2O or RuCl3·3H2O. Comptes Rendus de l’Académie Des Sciences - Series IIC - Chemistry, 2(5-6), 267-272.
Sharma, R. K. (2020). Silica-based organic-inorganic hybrid nanomaterials: synthesis, functionalization and applications in the field of catalysis. London, UK: World Scientific Publishing.
Shibata, T., Yamashita, K., Ishida, H., & Takagi, K. (2001). Iridium Complex Catalyzed Carbonylative Alkyne−Alkyne Coupling for the Synthesis of Cyclopentadienones. Organic Letters, 3(8), 1217-1219.
Skancke, A., & Liebman, J. F. (1994). Carbonyl Compounds of Boron and Their Isomers. The Journal of Physical Chemistry, 98(50), 13215–13220.
Tahara, A., Miyamoto, Y., Aoto, R., Shigeta, K., Une, Y., Sunada, Y., Motoyama, Y., & Nagashima, H. (2015). Catalyst Design of Vaska-Type Iridium Complexes for Highly Efficient Synthesis of π-Conjugated Enamines. Organometallics, 34(20), 4895-4907.
Tanaka, K., & Kinbara, K. (2008). Toward autonomously operating molecular machines driven by transition-metal catalyst. Molecular BioSystems, 4(6), 512-514.
Tanaka, M., & Sakakura, T. (1992). Functionalization of Hydrocarbons by Homogeneous Catalysis. In W. R. Moser & D. W. Slocum (Eds). Homogeneous Transition Metal Catalyzed Reactions, (pp. 181-196).
Taylor, K. A. (1974). Chelate Complexes of Iridium. Homogeneous Catalysis, 195–206.
Une, Y., Tahara, A., Miyamoto, Y., Sunada, Y., & Nagashima, H. (2019). Iridium-PPh3 Catalysts for Conversion of Amides to Enamines. Organometallics, 38(4), 852-862.
Vaska, L., & DiLuzio J. W. (1961). Carbonyl and Hydrido-Carbonyl Complexes of Iridium by Reaction with Alcohols Hydrido Complexes by Reaction with Acid. Journal of the American Chemical Society, 83, 2784-2785.
Vaska, L. (1961). Hydrido complexes of iridium. Journal of the American Chemical Society, 83(3), 756-756.
Vaska, L. (1965). Homogeneous catalysis by five- and six-coordinated metal hydride complexes (1,2). Inorganic and Nuclear Chemistry Letters, 1(2), 89-95.
Voet, D., & Voet, Judith, G. (2011). Biochemistry (4th ed). Hoboken, N.J: Wiley.
Vrieze, K., Collman, J. P., Sears, C. T., Kubota, M., Davison, A., & Shawl, E.T. (2007). trans-Chlorocarbonylbis(Tri-Phenylphosphine)Iridium. Inorganic Syntheses, 101-104.
Wang, J. (2013). Nanomachines: fundamentals and applications. Weinheim, DE: Wiley-VCH.
Weininger, M. S., Griffith, E. A. H., Sears, C. T., & Amma, E. L. (1982). The preparation and crystal structure of the dioxygen adduct of bis(diphenylethylphosphine)chlorocarbonyl iridium(I). Inorganica Chimica Acta, 60, 67-71.
Wender, I., & Pino, P. (1968). Organic syntheses via metal carbonyls. New York, USA: Interscience Publishers.
Yves, J. (2005). Molecular orbitals of transition metal complexes. Oxford, UK: Oxford University Press.
Zahalka, H. A., Alper, H., & Sasson, Y. (1986). Homogeneous decarbonylation of formate esters catalyzed by Vaska's compound. Organometallics, 5(12), 2497–2499.