Energy storage in the form of Hydrogen in Magnesium Hydride MgH2

Authors

DOI:

https://doi.org/10.37135/ns.01.06.07

Keywords:

Absorption, desorption, hydrogen, magnesium hydride, mechanically milling

Abstract

In this research, the synthesis, structural characterization, and thermal analysis of hydrogen (H2) desorption of magnesium hydride (MgH2) for hydrogen storage was carried out. The samples were mechanically grounded for 2, 5, and 10 hours in atmospheres containing argon (Ar) and hydrogen (H2). Subsequently, the samples were characterized by (1) X-ray diffraction (XRD), (2) differential scanning calorimetry (DSC), and (3) thermogravimetric analysis (TGA). Diffractions of mechanically grounded samples showed a reduction in grain size, which improves the diffusion of H2 by reducing dehydrogenation temperatures by up to 118 ºC. The maximum amount of H2 obtained from the samples was 6.65% w/w.

Downloads

Download data is not yet available.

References

Bellosta, J., Ares, J., Barale, J., Baricco, M., Buckley, C., Capurso, G., Gallandat, N., Grant, D., Guzik, M., Jacob, I., Jensen, E., Jensen, T., Jepsen, J., Klassen, T., Lototskyy, M., Manickam, K., Montone, A., Puszkiel, J., Sartori, S., Dornheim, M. (2019). Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives. International Journal of Hydrogen Energy, 44(15), 7780–7808. https://doi.org/10.1016/j.ijhydene.2019.01.104

Bortz, M., Bertheville, B., Böttger, G., & Yvon, K. (1999). Structure of the high pressure phase λ-MgH2 by neutron powder diffraction. In Journal of Alloys and Compounds (Vol. 287, Issues 1–2, pp. L4–L6). Elsevier Sequoia SA. https://doi.org/10.1016/S0925-8388(99)00028-6

Burstow, C. (2002). Magnesium: The impact of projected new supply on prices over the next five years. Transactions of the Institutions of Mining and Metallurgy, Section C: Mineral Processing and Extractive Metallurgy, 111(MAY/AUG). https://doi.org/10.1179/mpm.2002.111.2.62

Cabezas, M. (2014). Hydrogen energy vector: demonstration pilot plant with minimal. International Journal of Hydrogen Energy, 39, 18165–18172.

Centro Nacional de Hidrógeno. (2020). Hidrógeno. https://www.cnh2.es/el-hidrogeno/

Cid, I. (2014). Hidrógeno: Vector Energético en el Siglo XXI. https://core.ac.uk/download/pdf/289970908.pdf

Contreras, L. (2017). UBIRA ETheses - Mechanical synthesis of magnesium alloys for hydrogen storage. (PhD Thesis).

https://etheses.bham.ac.uk/id/eprint/8302/

Crivello, J., Denys, R., Dornheim, M., Felderhoff, M., Grant, D., Huot, J., Jensen, T., de Jongh, P., Latroche, M., Walker, G., Webb, C., & Yartys, V. (2016). Mg-based compounds for hydrogen and energy storage. Applied Physics A: Materials Science and Processing, 122(2), 1–17. https://doi.org/10.1007/s00339-016-9601-1

de Rango, P., Marty, P., & Fruchart, D. (2016). Hydrogen storage systems based on magnesium hydride: from laboratory tests to fuel cell integration. Applied Physics A: Materials Science and Processing, 122(2), 1–20. https://doi.org/10.1007/s00339-016-9646-1

DIFFRAC.SUITE EVA (Version 4.0) [XRD Software ]. (2014). | Bruker. Retrieved October 18, 2020, from https://www.bruker.com/products/x-ray-diffraction-and-elemental-analysis/x-ray-diffraction/xrd-software/eva.html

DIFFRAC.SUITE TOPAS (Version 4.0) [XRD Software]. (2014).| Bruker. Retrieved October 18, 2020, from https://www.bruker.com/products/x-ray-diffraction-and-elemental-analysis/x-ray-diffraction/xrd-software/topas.html

Dornheim, M., Doppiu, S., Barkhordarian, G., Boesenberg, U., Klassen, T., Gutfleisch, O., & Bormann, R. (2007). Hydrogen storage in magnesium-based hydrides and hydride composites. Scripta Materialia, 56(10), 841–846. https://doi.org/10.1016/j.scriptamat.2007.01.003

El Kharbachi, A., Dematteis, E., Shinzato, K., Stevenson, S., Bannenberg, L., Heere, M., Zlotea, C., Szilágyi, P., Bonnet, J., Grochala, W., Gregory, D., Ichikawa, T., Baricco, M., & Hauback, B. (2020). Metal Hydrides and Related Materials. Energy Carriers for Novel Hydrogen and Electrochemical Storage. Journal of Physical Chemistry C, 124(14), 7599–7607. https://doi.org/10.1021/acs.jpcc.0c01806

Fernández-Bolaño, C. (2005). Energética del hidrógeno:. Contexto, Estado Actual y Perspectivas de Futuro. Universidad de Sevilla. Proyecto de Fin de Carrera. http://bibing.us.es/proyectos/abreproy/3823/fichero/0+Portada+e+%C3%8Dndices.pdf

Gonzáles Delgado, A. (2018). Technological comparison of different hydrogen storage methods. Universidad Politécnica de Valencia. Tesis de pregrado. https://riunet.upv.es/bitstream/handle/10251/144039/González - Comparación tecnológica entre los diferentes métodos de almacenamiento de hidrógeno.pdf?sequence=2&isAllowed=y

García-Conde, A. G. (2010). Producción, almacenamiento y distribución de hidrógeno. Recuperado de: http://www2.udg.edu/Portals/88/proc_industrials/5%20-%20Otros%20Combustibles-Hidrogeno.pdf

Höhne, G., Hemminger, W., & Flammersheim, H. (2003). Differential Scanning Calorimetry. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-06710-9

ICSD (Version 2015.1) [Inorganic Chemical Database Service]. (2017) Retrieved October 18, 2020, from http://icsd.cds.rsc.org/search/basic.xhtml;jsessionid=82761CD648F766CC9CA76BDA84933E21?cdsrdr=3

Jain, I., Lal, C., & Jain, A. (2010). Hydrogen storage in Mg: A most promising material. International Journal of Hydrogen Energy, 35(10), 5133–5144. https://doi.org/10.1016/j.ijhydene.2009.08.088

Jiménez Sáez, F. (2020). Evaluación técnica y económica del uso de hidrógeno verde en aplicaciones para la indL.ustria y desplazamiento de combustible fósil. Universidad de Chile. http://repositorio.uchile.cl/handle/2250/175586

Kühne, K., Sanchez, L., Roth, J., & Tornel, C. (2019). Más allá de los combustibles fósiles: Transición fiscal en México. https://www.iisd.org/gsi

MacLaughlin, C. (2019). Status and Outlook for Magnesium Battery Technologies: A Conversation with Stan Whittingham and Sarbajit Banerjee. In ACS Energy Letters (Vol. 4, Issue 2, pp. 572–575). American Chemical Society. https://doi.org/10.1021/acsenergylett.9b00214

Sánchez, D., Linares, J., & Inzunza, K. (2020). Energías limpias: Una necesidad infravalorada . Recuperado de: https://issuu.com/danielasari/docs/maninfo_final

TA Instruments. (Version 2.1) [Análisis termogravimétrico]. (2012). Análisis termogravimétrico – TA Instruments. Recuperado de: https://www.tainstruments.com/productos/thermal-analysis/thermogravimetric-analysis/?lang=es

Tuerxun, F. (2015). A novel rechargeable battery with a magnesium anode, a titanium dioxide cathode, and a magnesium borohydride/tetraglyme electrolyte. http://ir.nsfc.gov.cn/paperDownload/1000013546320.pdf

Varin, R. Czujko, T., & Wronski, Z. (2006). Particle size, grain size and γ-MgH2 effects on the desorption properties of nanocrystalline commercial magnesium hydride processed by controlled mechanical milling. Nanotechnology, 17(15), 3856–3865. https://doi.org/10.1088/0957-4484/17/15/041

Wang, Y., & Wang, Y. (2017). Recent advances in additive-enhanced magnesium hydride for hydrogen storage. In Progress in Natural Science: Materials International (Vol. 27, Issue 1, pp. 41–49). Elsevier B.V. https://doi.org/10.1016/j.pnsc.2016.12.016

Zhang, J., Yan, S., & Qu, H. (2018). Recent progress in magnesium hydride modified through catalysis and nanoconfinement. In International Journal of Hydrogen Energy (Vol. 43, Issue 3, pp. 1545–1565). Elsevier Ltd. https://doi.org/10.1016/j.ijhydene.2017.11.135

Published

2020-12-01

Issue

Section

Research Articles and Reviews

How to Cite

Energy storage in the form of Hydrogen in Magnesium Hydride MgH2 . (2020). Novasinergia, ISSN 2631-2654, 3(2), 80-92. https://doi.org/10.37135/ns.01.06.07