Multicriteria analysis for the location of large-scale photovoltaic plants

Authors

DOI:

https://doi.org/10.37135/ns.01.06.04

Keywords:

Hierarchical analytical method, geographical information systems, multicriteria analysis, photovoltaic solar farm, renewable energy

Abstract

Ecuador's energy matrix exceeds 75% of renewable energy; however, hydroelectric energy is the primary source. As a first step towards obtaining a more environmentally friendly and diverse matrix, it is essential to identify areas with potential for installing non-conventional renewable energies. Geographic Information Systems (GIS) are of great help to identify areas with this potential. In this study, the possible sites for implementing photovoltaic solar power plants (PSPP) in the Azuay Province are identified utilizing GIS and Multicriteria Evaluation (ME). The Hierarchical Analytical Method (HAM) was used to assess the criteria's importance. To obtain a host capacity model (HCM), the aptitude model (AM) was integrated. Economic and technical criteria were analyzed; an impact model (IM) allowed the analysis of environmental variables. By integrating the models, this methodology allowed identifying areas for the stations' location that allow the monitoring of resources and behavior analysis before implementing the PSPPs. Once the proposed methodology has been executed, two possible sites with average characteristics are obtained for the PSPP's location. In conclusion, based on the indicators analyzed, Azuay does not have a potentially suitable area for installing this technology.

Downloads

Download data is not yet available.

References

Agencia de Regulación y Control de Electricidad. (2015). Regulación 004/15. Recuperado de http://www.regulacionelectrica.gob.ec/wp-content/uploads/downloads/2015/11/004.pdf

Agencia de Regulación y Control de Electricidad. (2018). Resolución Nro. Arconel-057/18. Recuperado de https://www.regulacionelectrica.gob.ec/wp-content/uploads/downloads/2019/01/Reforma-a-la-Regulacion-Microgeneracion.pdf

Agencia de Regulación y Control de Electricidad. (2020). Balance Nacional de Energía Eléctrica. Recuperado de https://www.regulacionelectrica.gob.ec/balance-nacional/

Aggarwal, R., & Singh, S. (2013). AHP and Extent Fuzzy AHP Approach for Prioritization of Performance Measurement Attributes. International Journal of Industrial and Manufacturing Engineering, 7(1), 6–11. https://doi.org/10.1108/IJEM-10-2016-0207

Al Garni, H., & Awasthi, A. (2017). Solar PV power plant site selection using a GIS-AHP based approach with application in Saudi Arabia. Applied Energy, 206, 1225–1240. https://doi.org/10.1016/j.apenergy.2017.10.024

Aly, A., Jensen, S. S., & Pedersen, A. B. (2017). Solar power potential of Tanzania: Identifying CSP and PV hot spots through a GIS multicriteria decision making analysis. Renewable Energy, 113, 159–175. https://doi.org/10.1016/j.renene.2017.05.077

Aydin, N. Y., Kentel, E., & Sebnem Duzgun, H. (2013). GIS-based site selection methodology for hybrid renewable energy systems: A case study from western Turkey. Energy Conversion and Management, 70, 90–106. https://doi.org/10.1016/j.enconman.2013.02.004

Cevallos-Sierra, J., & Ramos-Martin, J. (2018). Spatial assessment of the potential of renewable energy: The case of Ecuador. Renewable and Sustainable Energy Reviews, 81, 1154–1165. https://doi.org/10.1016/j.rser.2017.08.015

Charabi, Y., & Gastli, A. (2011). PV site suitability analysis using GIS-based spatial fuzzy multicriteria evaluation. Renewable Energy, 36, 2554–2561. https://doi.org/10.1016/j.renene.2010.10.037

CONELEC (Consejo Nacional de Eléctricidad). (2011). Regulación N° 003/11 (p. 14). p. 14. Recuperado de http://www.conelec.gob.ec/normativa/CONELEC plazos.pdf

CONELEC (Consejo Nacional de Electricidad). (2013). Codificación Regulación 001/13 (pp. 1–23). pp. 1–23.

Consejo Provincial del Azuay. (n.d.). Plan de desarrollo y ordenamiento territorial del Azuay actualizado 2015-2030. Recuperado de http://app.sni.gob.ec/sni-link/sni/PORTAL_SNI/data_sigad_plus/sigadplusdocumentofinal/0160000190001_PDyOT_AZUAY 2015_17-08-2015_10-02-34.pdf

de Paula, J., Salvador, R., Barros, M., Piekarski, C., da Luz, L., & de Francisco, A. (2020). A review on Multi-criteria Decision Analysis in the Life Cycle Assessment of Electricity Generation Systems. International Business, Trade and Institutional Sustainability, 575–590. https://doi.org/10.1007/978-3-030-26759-9_20

Fang, H., Li, J., & Song, W. (2018). Sustainable site selection for photovoltaic power plant: An integrated approach based on prospect theory. Energy Conversion and Management, 174, 755–768. https://doi.org/10.1016/j.enconman.2018.08.092

Ghenai, C., Albawab, M., & Bettayeb, M. (2020). Sustainability indicators for renewable energy systems using multicriteria decision-making model and extended SWARA/ARAS hybrid method. Renewable Energy, 146, 580–597. https://doi.org/10.1016/j.renene.2019.06.157

Gutiérrez, J., & Velázquez, J. (2018). Metodología para la localización óptima de instalaciones de energía solar fotovoltaica en la Isla de Tenerife, España. Congreso Nacional de Medio Ambiente 2018. Madrid. España.

Hashemizadeh, A., Ju, Y., & Dong, P. (2020). A combined geographical information system and Best–Worst Method approach for site selection for photovoltaic power plant projects. International Journal of Environmental Science and Technology, 17, 2027–2042. https://doi.org/10.1007/s13762-019-02598-8

Koengkan, M., Poveda, Y. E., & Fuinhas, J. A. (2019). Globalisation as a motor of renewable energy development in Latin America countries. GeoJournal. 85. 1591-1602. https://doi.org/10.1007/s10708-019-10042-0

Pohekar, S. D., & Ramachandran, M. (2004). Application of multicriteria decision making to sustainable energy planning: A review. Renewable and Sustainable Energy Reviews, 8, 365–381. https://doi.org/10.1016/j.rser.2003.12.007

Rediske, G., Siluk, J. C. M., Michels, L., Rigo, P. D., Carmen, B., & Cugler, G. (2020). Multicriteria decision-making model for assessment of large photovoltaic farms in Brazil. Energy, 197. https://doi.org/doi.org/10.1016/j.energy.2020.117167

Saaty, R. (1987). The analytic hierarchy process - what and how it is used. Math Modelling, 9, 161–176. https://doi.org/https://doi.org/10.1016/0270-0255(87)90473-8

Sánchez-Lozano, J. M., Antunes;, H., García-Cascales, M. S., & Días, L. C. (2014). GIS-based photovoltaic solar farms site selection using Electric-Tri: Evaluating the case for Torre Pacheco, Murcia, Southeast of Spain. Renewable Energy, 66, 478–494. https://doi.org/10.1016/j.renene.2013.12.038

Siksnelyte-Butkiene, I., Zavadskas, E., & Streimikiene, D. (2020). Multi-criteria decision-making (MCDM) for the assessment of renewable energy technologies in a household: A review. Energies, 13(5). https://doi.org/10.3390/en13051164

Torres-Pacheco, S., Jurado-Pérez, F., Granados-Lieberman, D., & Lozano-Luna, A. (2018). Eficiencia en paneles solares. Revista Del Diseño Innovativo, 2(2), 9–21.

Xu, X., Wei, Z., Ji, Q., Wang, C., & Gao, G. (2019). Global renewable energy development: Influencing factors, trend predictions and countermeasures. Resources Policy, 63.

https://doi.org/10.1016/j.resourpol.2019.101470

Published

2020-12-01

Issue

Section

Research Articles and Reviews

How to Cite

Multicriteria analysis for the location of large-scale photovoltaic plants. (2020). Novasinergia, ISSN 2631-2654, 3(2), 47-56. https://doi.org/10.37135/ns.01.06.04