Solución en serie de potencias para el espectro de energía de un potencial de pozo cuadrado finito unidimensional

Authors

DOI:

https://doi.org/10.37135/ns.01.08.02

Keywords:

Schrödinger equation, Inversion methods, Energy levels, Potential well, Series solution.

Abstract

In this work we study the problem of a particle in a finite square potential well. The eigenvalues corresponding to the Hamiltonian of the previous problem are found by a method which combines the Lagrange inversion theorem with a relation of recurrence to calculate derivatives of higher order of an inverse function. The methodology used allowed us to obtain a solution in of power for the finite square well potential that depend on the principal quantum number and of the force of attraction. On the other hand, our results reproduce, as special cases, general expressions of the eigenvalues for a particle located at the bottom of the well, in the middle of the well and at the top of the potential well. The calculated energies are compared with the exact solutions of the transcendental equation for the finite well and with the values reported by (Arostein & Stroud, 2000).

Downloads

Download data is not yet available.

References

Apostol, T. M. (2000). Am. Math. Month. 107(8), 738-741. https://doi.org/10.2307/2695472 Blümel, R. (2005). J. Phys. A: Math. Gen. 38(42), L673-L678. http://dx.doi.org/10.1088/0305-4470/38/42/L02

Bonfim, F. & Griffiths, D. J. (2006). Am. J. Phys. 74(1), 43-48. https://doi.org/10.1119/1.2140771

Burge, E. J. (1985). Eur. J. Phys. 6(3), 154-164. https://doi.org/10.1088/0143-0807/6/3/006

Cohen, C., Diu, B. & Laloe, F. (1977). Quantum Mechanics, New York: Wiley. Recuperado de https://archive.org/details/QuantumMechanicsVol1CohenTannoudji/page/n15/mode/2up Jeffreys, H. & Jeffreys, B. (1972). Methods of Mathematical Physics. England: Cambridge U.P. Kolbas, R. M. & Holonyak, N., (1984). Am. J. Phys. 52(5), 431-437. https://doi.org/10.1119/1.13649 Landau, L. D. & Lifshitz, E. M. (1977). Quantum Mechanics. Third Edition, Oxford, England: Pergamon Press.

Leyronas, X. & Combescot, M. (2002). Sol. Stat. Comm. 119. 631-634. https://doi.org/10.1016/S0038-1098(01)00288-5

Maor, E. (1988). Trigonometric Delights. New Jersey, United States: Princenton U.P.

Mckelvey, J. M. (1991). Física del Estado Sólido y de Semiconductores. Mexico, D. F.: Editorial Limusa.

Messiah, A. (1961). Quantum Mechanics, Amsterdam, Netherlands: North-Hollan.

Park, D. (1992). Introduction to the Quantum Theory. New York: McGraw-Hill.

Paul, P. & Nkemzi, D. (2000). J. Math. Physc. 41(7), 4551-4555. https://doi.org/10.1063/1.533361

Reed, B. C. (1990). Am. J. Phys. 58(5), 503-504. https://doi.org/10.1119/1.16457

Schiff, L. I. (1955). Quantum Mechanics. New York: McGraw-Hill.

Siewert, C. E. (1978). J. Math. Physc. 19(2), 434-435. https://doi.org/10.1063/1.523662

Sprung, D. W., Wu, H. & Martorell, J. (1992). Eur. J. Phys. 13(1), 21-25. https://doi.org/10.1088/0143-0807/13/1/005

Published

2021-12-01

Issue

Section

Research Articles and Reviews

How to Cite

Solución en serie de potencias para el espectro de energía de un potencial de pozo cuadrado finito unidimensional. (2021). Novasinergia, ISSN 2631-2654, 4(2), 38-47. https://doi.org/10.37135/ns.01.08.02