5G networks: A review from the perspectives of architecture, business models, cybersecurity, and research developments
DOI:
https://doi.org/10.37135/ns.01.07.01Keywords:
5G networks, architecture, business models, network security, research developments.Abstract
5G technology is transforming our critical networks, with long-term implications. Since 5G is transitioning to a purely software-based network, potential improvements will be software updates, like how smartphones are upgraded. For the global enterprise, the 5G arrival would be disruptive. Long-awaited solutions to various flaws in critical networking systems will arise due to 5G network adoption. Furthermore, the shortcomings of technology in contributing to business growth and success would be turned on their heads. The more complicated part of the actual 5G race is retooling how we protect the most critical network of the twenty-first century and the ecosystem of devices and applications that sprout from that network due to cyber software vulnerabilities. The new technologies enabled by new applications running on 5G networks have much potential. However, as we move toward a connected future, equal or more attention should be paid to protecting those links, computers, and applications. We address critical aspects of 5G standardization and architecture in this article. We also provide a detailed summary of 5G network business models, use cases, and cybersecurity. Furthermore, we perform a study of computer simulation methods and testbeds for the research and development of potential 5G network proposals, which are elements that are rarely addressed in current surveys and review articles
Downloads
References
GPP. (2021). 5G Release 16. Retrieved from https://www.3gpp.org/release-16
GPP. (2021). About 3GPP. Retrieved from https://www.3gpp.org/about-3gpp
G Americas. (2018, October). The evolution on security in 5G. Retrieved from https://www.5gamericas.org/the-evolution-of-security-in-5g-2/
G Americas. (2019, July). The evolution of security in 5G, a slice of mobile threats. Retrieved from https://www.5gamericas.org/wp-content/uploads/2019/08/5G-Security-White-Paper_8.15.pdf
G Americas. (2020). Security considerations for the 5G era. Retrieved from https://www.5gamericas.org/security-considerations-for-the-5g-era/
G Industrielles Internet. (2021). 5G Lab. Retrieved from http://www.ip45g.de/en/testbeds/5g-lab-2/
G Industrielles Internet. (2021). 5G-EVE. Retrieved from http://www.ip45g.de/en/testbeds/5g-eve/
GINFIRE. (2021). 5GINFIRE. University of Bristol 5G Testbed. Retrieved from https://5ginfire.eu/university-of-bristol-5g-testbed/
G-PPP. (2021). 5G Verticals Innovation Infrastructure. Retrieved from https://www.5g-vinni.eu/
Abdelwahab, S., Hamdaoui, B., Guizani , M., & Znati, T. (2016). Network function virtualization in 5G. IEEE Communications Magazine, 54(4), 84–91. http://doi.org/10.1109/MCOM.2016.7452271
Abdulghaffar, A., Mahmoud, A., Abu-Amara, M., & Sheltami, T. (2021). Modeling and evaluation of software defined networking based 5G core network architecture. IEEE Access, 9, 10179-10198. http://doi.org/10.1109/ACCESS.2021.3049945
Afolabi, I., Taleb, T., Samdanis, K., Kasentini, A., & Flinck, H. (2018). Network slicing and softwarization: A survey on principles, enabling technologies, and solutions. IEEE Communications Surveys Tutorials, 20(3), 2429-2453. http://doi.org/10.1109/COMST.2018.2815638
Agiwal, M., Kwon, H., Park, S., & Jin, H. (2021). A Survey on 4G-5G Dual Connectivity: Road to 5G Implementation. IEEE Access, 9, 16193-16210. http://doi.org/10.1109/ACCESS.2021.3052462
Agiwal, M., Roy, A., & Saxena, N. (2016). Next generation 5G wireless networks: A comprehensive survey. IEEE Communications Surveys & Tutorials, 18(3), 1617-1655. https://doi.org/10.1109/COMST.2016.2532458
Ahmad, I., Kumar, T., Liyanage, M., Okwuibe, J., Ylianttila, M., & Gurtov, A. (2017). 5G security: Analysis of threats and solutions. IEEE conference on standards for communications and networking (CSCN), (pp. 193–199). https://doi.org/10.1109/CSCN.2017.8088621
Akbar, A., Jangsher, S., & Bhatti, F. (2021). NOMA and 5G emerging technologies: A survey on issues and solution techniques. Computer Networks, 107950. https://doi.org/10.1016/j.comnet.2021.107950
Akyildiz, I., Kak, A., & Nie, S. (2020). 6G and Beyond: The Future of Wireless Communications Systems. IEEE Access, 8, 133995-134030. https://doi.org/10.1109/ACCESS.2020.3010896
Aptica. (2021, 05 15). Retrieved from Xirio Online: https://www.xirio-online.com/web/
Baker, J., & Waldron, K. (2020). 5G and zero trust networks. R Street Institute. Retrieved from https://www.jstor.org/stable/resrep27016
Barakabitze, A., Ahmad, A., Mijumbi, R., & Hines , A. (2020). 5G network slicing using SDN and NFV: A survey of taxonomy, architectures and future challenges. Computer Networks, 167. https://doi.org/10.1016/j.comnet.2019.106984
Basin, D., Dreier, J., Hirschi, L., Radomirovic, S., Sasse, R., & Stettler, V. (2018). A formal analysis of 5G authentication. Proceedings of the 2018 ACM SIGSAC conference on computer and communications security, (pp. 1383-1396). https://doi.org/10.1145/3243734.3243846
Bouras, C., Gkamas, A., Diles, G., & Andreas , Z. (2020). A Comparative Study of 4G and 5G Network Simulators. International Journal on Advances in Networks and Services, 13(1 & 2). Retrieved from http://www.iariajournals.org/networks_and_services/netser_v13_n12_2020_paged.pdf#page=19
Camarán, C., & De Miguel, D. (2008). Mobile virtual network operator (MVNO) basics. Retrieved from http://www.valoris.com/docs/Valoris_Viewpoint_-_MVNO_basics_-_What_is_behind_this_mobile_business_trend.pdf
Chataut, R., & Akl, R. (2020). Massive MIMO Systems for 5G and beyond Networks—Overview, Recent Trends, Challenges, and Future Research Direction. Sensors, 20(10). doi:https://doi.org/10.3390/s20102753
Chettri, L., & Bera, R. (2020). A Comprehensive Survey on Internet of Things (IoT) Toward 5G Wireless Systems. IEEE Internet of Things Journal, 7(1), 16-32. https://doi.org/10.1109/JIOT.2019.2948888
Copeland , R., & Crespi, N. (2011). Modelling multi-MNO business for MVNOs in their evolution to LTE VoLTE & advanced policy. 15th international conference on intelligence in next generation networks, (pp. 295-300). https://doi.org/10.1109/ICIN.2011.6081092
COSMOS GROUP. (2021). Cosmos Project. Retrieved from https://cosmos-lab.org/
Costa-Perez, X., Garcia-Saavedra, A., Li, X., Deiss, T., De la Oliva, A., Di Giglio, A., & Moored, A. (2017). 5G-crosshaul: An SDN/NFV integrated fronthaul/backhaul transport network architecture. IEEE wireless communications, 24(1), 38-45. https://doi.org/10.1109/MWC.2017.1600181WC
CTTC. (2021). 5G-LENA. Retrieved from https://5g-lena.cttc.es/
Curwen, P., & Whalley, J. (2021). 5G: A multigenerational approach. In Understanding 5G mobile networks. Emerald Publishing Limited. https://doi.org/10.1108/978-1-80071-036-820210001
Dahlman, E., Parkyall, S., & Skold, J. (2020). 5G NR: The next generation wireless access technology. Elsevier Science.
Dang, S., Amin, O., Shihada, B., & Alouini, M.-S. (2020). What should 6G be? Nature Electronics, 3(1), 20-29. https://doi.org/10.1038/s41928-019-0355-6
Elayoubi, S., Bedo, J.-S., Filippou, M., Gavras, A., Giustiniano, D., & Iovanna, P. (2017). 5G innovations for new business opportunities. Mobile world congress. Retrieved from https://hal.inria.fr/hal-01488208/
Forescout Technologies. (2017). IoT and OT security research exposes hidden business challenges. Retrieved from https://www.forescout.com/iot_forrester_study/
Foukas, X., Patounas, G., Elmokashfi, A., & Marina, M. (2017). Network slicing in 5G: Survey and challenges. IEEE Communications Magazine, 55(5), 94-100. https://doi.org/10.1109/MCOM.2017.1600951
Fourati, H., Maaloul, R., & Chaari, L. (2021). A survey of 5G network systems: challenges and machine learning approaches. International Journal of Machine Learning and Cybernetics, 12(2), 385-431. https://doi.org/10.1007/s13042-020-01178-4
Ge, X., Zhou, R., & Li, Q. (2019). 5G NFV-based tactile internet for mission-critical IoT services. IEEE Internet of Things, 7(7), 6150-6163. https://doi.org/10.1109/JIOT.2019.2958063
Ghassemian, M., Muschamp , P., & Warren, D. (2020). Experience Building a 5G Testbed Platform. IEEE 3rd 5G world forum (5GWF), (pp. 473–478). https://doi.org/10.1109/5GWF49715.2020.9221109
Giust , F., Costa-Perez, X., & Reznik, A. (2017). Multi-access edge computing: An overview of ETSI MEC ISG. 1, 4. Retrieved from https://futurenetworks.ieee.org/tech-focus/december-2017/multi-access-edge-computing-overview-of-etsi
Giust , F., Sciancalepore , V., Sabella, D., Filippou, M., Mangiante , S., Featherstone, W., & Munaretto D. (2018). Multi-access edge computing: The driver behind the wheel of 5G-connected cars. IEEE Communications Standards Magazine, 2(3), 66-73. https://doi.org/10.1109/MCOMSTD.2018.1800013
Golzarjannat, A., Ahokangas, P., Matinmikko-Blue, M., & Yrjola, S. (2021). A business model approach to port ecosystem. Journal of Business Models, 9(1), 13-19. https://doi.org/10.5278/jbm.v9i1.4261
Gomes J. F., Ahokangas, P., & Mogaddamerad, S. (2016). Business modeling options for distributed network functions virtualization: Operator perspective. European wireless 2016; 22th european wireless conference, (pp. 1-6). Retrieved from https://ieeexplore.ieee.org/abstract/document/7499279/
González , C. (2019). Desafíos de seguridad en redes 5G. 3, 36-45. Retrieved from https://cpic-sistemas.or.cr/revista/index.php/technology-inside/article/view/47/47
Guijarro , L., Pla, V., & Tuffin , B. (2013). Entry game under opportunistic access in cognitive radio networks: A priority queue model. IFIP wireless days (WD), (pp. 1-6). https://doi.org/10.1109/WD.2013.6686476
Guijarro, L., Vidal, J., Pla, V., & Naldi, M. (2019). Economic analysis of a multi-sided platform for sensor-based services in the internet of things. Sensors, 19(2), 373. https://doi.org/10.3390/s19020373
Gupta, M., Legouable, R., Rosello, M., Cecchi, M., Alonso, J., Lorenzo, M., & Carrozzo, G. (2019). The 5G EVE end-to-end 5G facility for extensive trials. IEEE international conference on communications workshops (ICC workshops), (pp. 1-5). https://doi.org/10.1109/ICCW.2019.8757139
Han, B., Feng, D., Ji, L., & Schotten, H. (2017). A profit-maximizing strategy of network resource management for 5G tenant slices. arXiv preprint arXiv:1709.09229. Retrieved from https://arxiv.org/abs/1709.09229
Han, B., Tavade, S., & Schotten , H. (2017). Modeling profit of sliced 5G networks for advanced network resource management and slice implementation. IEEE symposium on computers and communications (ISCC), (pp. 576-581). https://doi.org/10.1109/ISCC.2017.8024590
Hassan, N., Yau, K.-L., & Wu, C. (2019). Edge computing in 5G: A review. IEEE Access, 7, 127276–127289. https://doi.org/10.1109/ACCESS.2019.2938534
Hicham, M., Abghour, N., & Ouzzif, M. (2018). 5G mobile networks based on SDN concepts. International Journal of Engineering and Technology (UAE), 7(4), 2231-2235. http://dx.doi.org/10.14419/ijet.v7i2.18.12194
Ho, T., Tran, N., Kazmi, S., Han, Z., & Hong C. S. (2018). Wireless network virtualization with non-orthogonal multiple access. NOMS 2018-2018 IEEE/IFIP network operations and management symposium, (pp. 1-9). https://doi.org/10.1109/NOMS.2018.8406264
Housenovic, K., Bedi, I., Maddens, S., Bozsoki, I., Daryabwite, D., & Sundberg, N. (2018). Setting the scene for 5G: Opportunities & challenges. International Telecommunications Union. Retrieved from https://www.itu.int/myitu/-/media/Publications/2018-Publications/BDT-2018/En---Setting-the-scene-for-5G--opportunities-and-challenges.pdf
Hu, Y., Patel, M., Sabella , D., Sprecher, N., & Young, V. (2015). Mobile edge computing—a key technology towards 5G. ETSI white paper, 11(11), 1-16. Retrieved from https://www.etsi.org/images/files/etsiwhitepapers/etsi_wp11_mec_a_key_technology_towards_5g.pdf
Hultell, J., Johansson, K., & Markendahl, J. (2004). Business models and resource management for shared wireless networks. IEEE 60th vehicular technology conference, 5, 3393-3397. https://doi.org/10.1109/VETECF.2004.1404693
Hussain, R., Hussain, F., & Zeadally, S. (2019). Integration of vanet and 5G security: A review of design and implementation issues. Future Generation Computer Systems, 101, 843–864. https://doi.org/10.1016/j.future.2019.07.006
Informationsplattform for 5G. (2021). 5G Testbends. Retrieved from https://www.ip45g.de/en/5g-testbeds/
Institute of Telecommunications. (n.d.). Vienna 5G Simulators. Retrieved from https://www.nt.tuwien.ac.at/research/mobile-communications/vccs
ITProPortal. (2019, December). Old vulnerabilities could majorly impact 5G security. Retrieved from https://www.itproportal.com/news/old-vulnerabilities-could-majorly-impact-5g-security/
ITU. (2017). Guidelines for evaluation of radio interface technologies for IMT-2020. ITU-Recommendation M.2412. Retrieved from https://www.itu.int/dms_pub/itu-r/opb/rep/R-REP-M.2412-2017-PDF-E.pdf
Jiang, M., Condoluci, M., Mahmoodi, T., & Guijarro, L. (n.d.). Economics of 5G network slicing: optimal and revenue-based allocation of radio and core resources in 5G. Retrieved from https://nms.kcl.ac.uk/toktam.mahmoodi/files/TWC-16.pdf
Kaloxylos, A. (2018). A survey and an analysis of network slicing in 5G networks. IEEE Communications Standards Magazine, 2(1), 60-65. https://doi.org/10.1109/MCOMSTD.2018.1700072
Kazmi, S., Khan, L., Tran, N., & Hong, C. (2019). 5G networks. In Network Slicing for 5G and Beyond Networks (pp. 1-12). Springer. https://doi.org/10.1007/978-3-030-16170-5_1
Kazmi, S., Tran, N., Ho, T., & Hong, C. (2017). Hierarchical matching game for service selection and resource purchasing in wireless network virtualization. IEEE Communications Letters, 22(1), 121-124. https://doi.org/10.1109/LCOMM.2017.2701803
Khalifa, N., Benhamiche, A., Simonian, A., & Bouillon, M. (2018). Profit and strategic analysis for MNO-MVNO partnership. 2018 IFIP networking conference (IFIP networking) and workshops, (pp. 325-333). https://doi.org/10.23919/IFIPNetworking.2018.8696771
Khan, L.-U., Yaqoob, I., Tran, N., Han, Z., & Hong, C. (2020). Network Slicing: Recent Advances, Taxonomy, Requirements, and Open Research Challenges. IEEE Access, 8, 36009-36028. http://doi.org/10.1109/ACCESS.2020.2975072
Khan, R., Kumar, P., Jayakody, D., & Liyanage, M. (2020). A Survey on Security and Privacy of 5G Technologies: Potential Solutions, Recent Advancements, and Future Directions. IEEE Communications Surveys Tutorials, 22(1), 196- 248. https://doi.org/10.1109/COMST.2019.2933899
Khan, S., Naseem, U., Siraj, H., Razzak, I., & Imran, M. (2020). The role of unmanned aerial vehicles and mmWave in 5G: Recent advances and challenges. Transactions on Emerging Telecommunications Technologies, e4241. https://doi.org/10.1002/ett.4241
Kim, B., & Park, S. (2004). Determination of the optimal access charge for the mobile virtual network operator system. ETRI journal, 26(6), 665-668. https://doi.org/10.4218/etrij.04.0204.0016
Kostopoulos, A., Chochliouros, I., & Spada, M. (2019). Business challenges for service provisioning in 5G networks. International conference on business information systems, (pp. 423-434). https://doi.org/10.1007/978-3-030-20485-3_33
Koumaras, H., Tsolkas, D., Gardikis, G., Gomez, P., Frascolla, V., Triantafyllopoulou, D., & Bosneag, A. (2018). 5genesis: The genesis of a flexible 5G facility. IEEE 23rd international workshop on computer aided modeling and design of communication links and networks (camad), (pp. 1-6). https://doi.org/10.1109/CAMAD.2018.8514956
Laghrissi, A., & Taleb , T. (2018). A survey on the placement of virtual resources and virtual network functions. IEEE Communications Surveys & Tutorials, 21(2), 1409-1434. https://doi.org/10.1109/COMST.2018.2884835
Li, X., Samaka , M., Chan, H., Bhamare, D., Gupta, L., Guo, C., & Jain, R. (2017). Network slicing for 5G: Challenges and opportunities. IEEE Internet Computing, 20-27. https://doi.org/10.1109/MIC.2017.3481355
Lin, Y.-B., Tseng, C.-C., & Wang, M.-H. (2021). Effects of transport network slicing on 5G applications. Future Internet, 13(3), 69. https://doi.org/10.3390/fi13030069
Liu, Y., Yang, X., & Cuthbert, L. (2021). Network slicing with spectrum sharing. Radio Access Network Slicing and Virtualization for 5G Vertical Industrie, 137-166. https://doi.org/10.1002/9781119652434.ch8
Mamadou, A., Toussaint, J., & Chalhoub, G. (2020). Survey on wireless networks coexistence: resource sharing in the 5G era. Mobile Networks and Applications, 25(5), 1749–1764. https://doi.org/10.1007/s11036-020-01564-w
Mathur, H., & Deepa, T. (2021). A Survey on Advanced Multiple Access Techniques for 5G and Beyond Wireless Communications. Wireless Personal Communications, 1–18. https://doi.org/10.1007/s11277-021-08115-w
MathWorks. (2021). 5G Toolbox. Retrieved from https://www.mathworks.com/products/5g.html
METIS. (2020). METIS 2020 Project. Retrieved from https://metis2020.com/
Michalopoulos, D., Doll, M., Sciancalepore, V., Bega , D., Schneider , P., & Rost, P. (2017). Network slicing via function decomposition and flexible network design. 2017 IEEE 28th annual international symposium on personal, indoor, and mobile radio communications (pimrc), (pp. 1-6). https://doi.org/10.1109/PIMRC.2017.8292661
Mohamed, K., Alias, M., Roslee, M., & Raji, Y. (2021). Towards green communication in 5G systems: Survey on beamforming concept. IET Communications, 15(1), 142–154. doi:https://doi.org/10.1049/cmu2.12066
Muller, M., Ademaj, F., Dittrich, T., Fastenbauer, A., Elbal, B., Nabayi, A., & Rupp, M. (2018, September). Flexible multi-node simulation of cellular mobile communications: the Vienna 5G System Level Simulator. EURASIP Journal on Wireless Communications and Networking, 2018(1), 17. https://doi.org/10.1186/s13638-018-1238-7
Navarro-Ortiz, J., Romero-Diaz, P., Sendra , S., Ameigeiras, P., Ramos-Munoz, J., & Lopez-Soler, J. (2020). A survey on 5G usage scenarios and traffic models. IEEE Communications Surveys Tutorials, 22(2), 905-929. https://doi.org/10.1109/COMST.2020.2971781
Next Generation Mobile Network (NGMN) Alliance. (2016). Description of network slicing concept. Retrieved from https://www.ngmn.org/publications/description-of-network-slicing-concept.html
Next Generation Mobile Networks (NGMN) Alliance. (2015). 5G White Paper. Retrieved from https://www.ngmn.org/work-programme/5g-white-paper.html
Nguyen , V.-G., Brunstrom, A., Grinnemo, K.-J., & Taheri, J. (2017). SDN/NFV-based mobile packet core network architectures: A survey. IEEE Communications Surveys & Tutorials, 19(3), 1567-1602. https://doi.org/10.1109/COMST.2017.2690823
Nguyen, D., Pathirana, P., Ding, M., & Seneviratne, A. (2020). Blockchain for 5G and beyond networks: A state of the art survey. Journal of Network and Computer Applications, 102693. https://doi.org/10.1016/j.jnca.2020.102693
Open5GCore. (2021). Open5GCore toolkit. Retrieved from https://www.open5gcore.org/
Open5GS. (2021). Open5GS. Retrieved from https://open5gs.org/open5gs/
Ordonez-Lucena, J., Ameigeiras, P., Lopez , D., Ramos-Munoz, J., Lorca, J., & Folgueira , J. (2017). Network slicing for 5G with SDN/NFV: Concepts, architectures, and challenges. IEEE Communications Magazine, 55(5), 80–87. https://doi.org/10.1109/MCOM.2017.1600935
Pacheco-Paramo, D., & Tello-Oquendo , L. (2020). Delay-aware dynamic access control for mMTC in wireless networks using deep reinforcement learning. Computer Networks, 182, 107493. https://doi.org/10.1016/j.comnet.2020.107493
Pacheco-Paramo, D., Tello-Oquendo, L., Pla, V., & Martinez-Bauset, J. (2019). Deep reinforcement learning mechanism for dynamic access control in wireless networks handling mMTC. Ad Hoc Networks, 94, 101939. https://doi.org/10.1016/j.adhoc.2019.101939
Pham, Q., Fang, F., Ha, V., Piran, M., Le, M., Le, L., & Ding, Z. (2020). A survey of multi-access edge computing in 5G and beyond: Fundamentals, technology integration, and state-of-the-art. IEEE Access, 8, 116974–117017. https://doi.org/10.1109/ACCESS.2020.3001277
Pousttchi, K., & Hufenbach, Y. (2009). Analyzing and categorization of the business model of virtual operators. Eighth international conference on mobile business, (pp. 87-92). https://doi.org/10.1109/ICMB.2009.22
Prabakaran, D., Nizar, S. M., & Kumar, K. S. (2021). Software-defined network (SDN) architecture and security considerations for 5G communications. In Design methodologies and tools for 5G network development and application (pp. 28-43). IGI Global. http://doi.org/10.4018/978-1-7998-4610-9.ch002
Pujol, F., Elayoubi, S., Markendahl, J., & Salahaldin, L. (2016). Mobile telecommunications ecosystem evolutions with 5G. Communications & Strategies(102), 109. Retrieved from https://www.proquest.com/scholarly-journals/mobile-telecommunications-ecosystem-evolutions/docview/1801631914/se-2?accountid=171402
Rayani, M., Glitho, R., & Elbiaze, H. (2020). ETSI multi-access edge computing for dynamic adaptive streaming in information centric networks. Globecom 2020-2020 IEEE global communications conference, (pp. 1-6). https://doi.org/10.1109/GLOBECOM42002.2020.9322209
Romero, J., & Guijarro, L. (2013). Competition between primary and secondary operators with spectrum leasing and optimal spectrum subscription by users. IEEE 24th international symposium on personal, indoor and mobile radio communications (PIMRC workshops), (pp. 143-147). https://doi.org/10.1109/PIMRCW.2013.6707853
Sacoto-Cabrera, E. (2021). Análisis basado en teoría de juegos de modelos de negocio de operadores móviles virtuales en redes 4G y 5G. Universitat Politecnica de Valencia. http://doi.org/10.4995/Thesis/10251/158595
Sacoto-Cabrera, E., Guijarro, L., & Maillé, P. (2020). Game theoretical analysis of a multi-MNO MVNO business model in 5G networks. Electronics, 9(6), 933. https://doi.org/10.3390/electronics9060933
Sacoto-Cabrera, E., Guijarro, L., Vidal, J., & Pla, V. (2020). Economic feasibility of virtual operators in 5G via network slicing. Future Generation Computer System, 109, 172-187. https://doi.org/10.1016/j.future.2020.03.044
Samdanis, K., Costa-Perez, X., & Sciancalepore, V. (2016). From network sharing to multi-tenancy: The 5G network slice broker. IEEE Communications Magazine, 9(6), 32-39. https://doi.org/10.1109/MCOM.2016.7514161
Sanenga, A., Mapunda, G., Jacob, T., Marata , L., Basutli , B., & Chuma, J. (2020). An Overview of Key Technologies in Physical Layer Security. Entropy, 22(11). https://doi.org/10.3390/e22111261
Santos, G., Endo, P., Sadok, D., & Kelner, J. (2020). When 5G meets deep learning: a systematic review. Algorithms, 13(9), 208. https://doi.org/10.3390/a13090208
Selvi, K., & Thamiselvan, R. (2021). Dynamic resource allocation for SDN and edge computing based 5G network. Third international conference on intelligent communication technologies and virtual mobile networks (icicv), (pp. 19-22). https://doi.org/10.1109/ICICV50876.2021.9388468
Shaik, A., Borgaonkar, R., Park, S., & Seifert, J. (2019). New vulnerabilities in 4G and 5G cellular access network protocols: exposing device capabilities. WiSec '19: Proceedings of the 12th Conference on Security and Privacy in Wireless and Mobile Networks, (pp. 221-231). https://doi.org/10.1145/3317549.3319728
Smura, T., Kiiski, A., & Hammainen, H. (2007). Virtual operators in the mobile industry: a techno-economic analysis. NETNOMICS: Economic research and Electronic Networking, 8(1-2), 25-48. http://doi.org/10.1007/s11066-008-9012-3
Song, G., Wang, W., Chen, D., & Jiang, T. (2018). KPI/KQI-driven coordinated multipoint in 5G: Measurements, field trials, and technical solutions. IEEE Wireless Communications, 25(5), 23-29. https://doi.org/10.1109/MWC.2018.1800041
Soós, G., Ficzere, D., Varga, P., & Szalay, Z. (2020). Practical 5G KPI measurement results on a non-standalone architecture. In Noms 2020 - 2020 IEEE/IFIP network operations and management symposium, (pp. 1-5). https://doi.org/10.1109/NOMS47738.2020.9110457
Stallings, W. (2015). Foundations of modern networking: SDN, NFV, QoE, IoT, and Cloud. Addison-Wesley Professional. Retrieved from https://books.google.com/books?id=nL_QCgAAQBAJ
Su, R., Zhang, D., Venkatesan, R., Gong, Z., Li, C., Ding, F., & Zhu, Z. (2019). Resource allocation for network slicing in 5G telecommunication networks: A survey of principles and models. IEEE Network, 33(6), 172-179. https://doi.org/10.1109/MNET.2019.1900024
Tataria, H., Shafi, M., Molisch, A., Dohler, M., Sioland, H., & Tufvesson, F. (2021). 6G Wireless Systems: Vision, Requirements, Challenges, Insights, and Opportunities. Proceedings of the IEEE, 1-34. https://doi.org/10.1109/JPROC.2021.3061701
Tello-Oquendo, L., Akyildiz, I., Lin , S.-C., & Pla , V. (2018). SDN-based architecture for providing reliable internet of things connectivity in 5G systems. 17th annual mediterranean ad hoc networking workshop (med-hoc-net), (pp. 1-8). https://doi.org/10.23919/MedHocNet.2018.8407080
Tello-Oquendo, L., Leyva-Mayorga, I., Pla, V., Martínez-Bauset, J., & Casares-Giner, V. (2015). Analysis of LTE-A random access procedure: A foundation to propose mechanisms for managing the M2M massive access in wireless cellular networks. Workshop on innovation on information and communication technologies (itaca-wiict 2015), (pp. 95-104).
Tello-Oquendo, L., Lin, S.-C., Akyildiz, I., & Pla, V. (2019). Software-defined architecture for QoS-aware IoT deployments in 5G systems. Ad Hoc Networks, 93, 101911. https://doi.org/10.1016/j.adhoc.2019.101911
Tello-Oquendo, L., Vidal Catalá, J.-R., Pla, V., & Martínez Bauset, J. (2018). Extended access barring for handling massive machine type communication (mMTC) deployments. Novasinergia, 1(2), 38-44. https://doi.org/10.37135/unach.ns.001.02.04
Tello-Oquendo, L., Vidal, J.-R., Pla, V., & Guijarro, L. (2018). Dynamic access class barring parameter tuning in LTE-A networks with massive M2M traffic. 17th annual mediterranean ad hoc networking workshop (med-hoc-net), (pp. 1-8). https://doi.org/10.23919/MedHocNet.2018.8407086
Tetcos. (2021). 5G NR. Retrieved from https://www.tetcos.com/5g.html
University of Surrey. (2021). 5G Testbeds. Retrieved from https://www.surrey.ac.uk/institute-communication-systems/facilities/5g-testbed
Varoutas, D., Katsianis, D., Sphicopoulos, T., Stordahl, K., & Welling , I. (2006). On the economics of 3G mobile virtual network operators (MVNOs). Wireless Personal Communications, 36(2), 129-142. http://doi.org/10.1007/s11277-006-0027-5
Vidal, J.-R., Tello-Oquendo, L., Pla, V., & Guijarro, L. (2019). Performance study and enhancement of access barring for massive machine-type communications. IEEE Access, 7, 63745–63759. doi:https://doi.org/10.1109/ACCESS.2019.2917618
Xiong, Z., Zhang, Y., Nivato, D., Deng, R., Wang, P., & Wang, L. (2019). Deep Reinforcement Learning for Mobile 5G and Beyond: Fundamentals, Applications, and Challenges. IEEE Vehicular Technology Magazine, 14(2), 44-52. https://doi.org/10.1109/MVT.2019.2903655
Xu, Y., Gui, G., Gacanin, H., & Adachi, F. (2021). A Survey on Resource Allocation for 5G Heterogeneous Networks: Current Research, Future Trends and Challenges. IEEE Communications Surveys Tutorials, 1-1. https://doi.org/10.1109/COMST.2021.3059896
Yachika, Kaur, P., & Garg, R. (2021, january). A survey on key enabling technologies towards 5G. IOP Conference Series: Materials Science and Engineering, 012011. https://doi.org/10.1088/1757-899x/1033/1/012011
Zhang, Q., Gui , L., Tian, F., & Sun , F. (2017). A caching-based incentive mechanism for cooperative data offloading. IEEE international conference on communications workshops (icc workshops), (pp. 1376-1381). https://doi.org/10.1109/ICCW.2017.7962851
Zhu, Y., Yu, H., Berry, R., & Liu, C. (2019). Cross-network prioritized sharing: an added value MVNO’s perspective. IEEE infocom 2019-ieee conference on computer communications, (pp. 1549-1557). https://doi.org/10.1109/INFOCOM.2019.8737636
Downloads
Published
Versions
- 2021-06-15 (3)
- 2021-06-15 (2)
- 2021-06-01 (1)