This is an outdated version published on 2021-06-15. Read the most recent version.

5G networks: A review from the perspectives of architecture, business models, cybersecurity, and research developments

Authors

DOI:

https://doi.org/10.37135/ns.01.07.01

Keywords:

5G networks, architecture, business models, network security, research developments.

Abstract

5G technology is transforming our critical networks, with long-term implications. Since 5G is transitioning to a purely software-based network, potential improvements will be software updates, like how smartphones are upgraded. For the global enterprise, the 5G arrival would be disruptive. Long-awaited solutions to various flaws in critical networking systems will arise due to 5G network adoption. Furthermore, the shortcomings of technology in contributing to business growth and success would be turned on their heads. The more complicated part of the actual 5G race is retooling how we protect the most critical network of the twenty-first century and the ecosystem of devices and applications that sprout from that network due to cyber software vulnerabilities. The new technologies enabled by new applications running on 5G networks have much potential. However, as we move toward a connected future, equal or more attention should be paid to protecting those links, computers, and applications. We address critical aspects of 5G standardization and architecture in this article. We also provide a detailed summary of 5G network business models, use cases, and cybersecurity. Furthermore, we perform a study of computer simulation methods and testbeds for the research and development of potential 5G network proposals, which are elements that are rarely addressed in current surveys and review articles

Downloads

Download data is not yet available.

References

GPP. (2021). 5G Release 16. Retrieved from https://www.3gpp.org/release-16

GPP. (2021). About 3GPP. Retrieved from https://www.3gpp.org/about-3gpp

G Americas. (2018, October). The evolution on security in 5G. Retrieved from https://www.5gamericas.org/the-evolution-of-security-in-5g-2/

G Americas. (2019, July). The evolution of security in 5G, a slice of mobile threats. Retrieved from https://www.5gamericas.org/wp-content/uploads/2019/08/5G-Security-White-Paper_8.15.pdf

G Americas. (2020). Security considerations for the 5G era. Retrieved from https://www.5gamericas.org/security-considerations-for-the-5g-era/

G Industrielles Internet. (2021). 5G Lab. Retrieved from http://www.ip45g.de/en/testbeds/5g-lab-2/

G Industrielles Internet. (2021). 5G-EVE. Retrieved from http://www.ip45g.de/en/testbeds/5g-eve/

GINFIRE. (2021). 5GINFIRE. University of Bristol 5G Testbed. Retrieved from https://5ginfire.eu/university-of-bristol-5g-testbed/

G-PPP. (2021). 5G Verticals Innovation Infrastructure. Retrieved from https://www.5g-vinni.eu/

Abdelwahab, S., Hamdaoui, B., Guizani , M., & Znati, T. (2016). Network function virtualization in 5G. IEEE Communications Magazine, 54(4), 84–91. http://doi.org/10.1109/MCOM.2016.7452271

Abdulghaffar, A., Mahmoud, A., Abu-Amara, M., & Sheltami, T. (2021). Modeling and evaluation of software defined networking based 5G core network architecture. IEEE Access, 9, 10179-10198. http://doi.org/10.1109/ACCESS.2021.3049945

Afolabi, I., Taleb, T., Samdanis, K., Kasentini, A., & Flinck, H. (2018). Network slicing and softwarization: A survey on principles, enabling technologies, and solutions. IEEE Communications Surveys Tutorials, 20(3), 2429-2453. http://doi.org/10.1109/COMST.2018.2815638

Agiwal, M., Kwon, H., Park, S., & Jin, H. (2021). A Survey on 4G-5G Dual Connectivity: Road to 5G Implementation. IEEE Access, 9, 16193-16210. http://doi.org/10.1109/ACCESS.2021.3052462

Agiwal, M., Roy, A., & Saxena, N. (2016). Next generation 5G wireless networks: A comprehensive survey. IEEE Communications Surveys & Tutorials, 18(3), 1617-1655. https://doi.org/10.1109/COMST.2016.2532458

Ahmad, I., Kumar, T., Liyanage, M., Okwuibe, J., Ylianttila, M., & Gurtov, A. (2017). 5G security: Analysis of threats and solutions. IEEE conference on standards for communications and networking (CSCN), (pp. 193–199). https://doi.org/10.1109/CSCN.2017.8088621

Akbar, A., Jangsher, S., & Bhatti, F. (2021). NOMA and 5G emerging technologies: A survey on issues and solution techniques. Computer Networks, 107950. https://doi.org/10.1016/j.comnet.2021.107950

Akyildiz, I., Kak, A., & Nie, S. (2020). 6G and Beyond: The Future of Wireless Communications Systems. IEEE Access, 8, 133995-134030. https://doi.org/10.1109/ACCESS.2020.3010896

Aptica. (2021, 05 15). Retrieved from Xirio Online: https://www.xirio-online.com/web/

Baker, J., & Waldron, K. (2020). 5G and zero trust networks. R Street Institute. Retrieved from https://www.jstor.org/stable/resrep27016

Barakabitze, A., Ahmad, A., Mijumbi, R., & Hines , A. (2020). 5G network slicing using SDN and NFV: A survey of taxonomy, architectures and future challenges. Computer Networks, 167. https://doi.org/10.1016/j.comnet.2019.106984

Basin, D., Dreier, J., Hirschi, L., Radomirovic, S., Sasse, R., & Stettler, V. (2018). A formal analysis of 5G authentication. Proceedings of the 2018 ACM SIGSAC conference on computer and communications security, (pp. 1383-1396). https://doi.org/10.1145/3243734.3243846

Bouras, C., Gkamas, A., Diles, G., & Andreas , Z. (2020). A Comparative Study of 4G and 5G Network Simulators. International Journal on Advances in Networks and Services, 13(1 & 2). Retrieved from http://www.iariajournals.org/networks_and_services/netser_v13_n12_2020_paged.pdf#page=19

Camarán, C., & De Miguel, D. (2008). Mobile virtual network operator (MVNO) basics. Retrieved from http://www.valoris.com/docs/Valoris_Viewpoint_-_MVNO_basics_-_What_is_behind_this_mobile_business_trend.pdf

Chataut, R., & Akl, R. (2020). Massive MIMO Systems for 5G and beyond Networks—Overview, Recent Trends, Challenges, and Future Research Direction. Sensors, 20(10). doi:https://doi.org/10.3390/s20102753

Chettri, L., & Bera, R. (2020). A Comprehensive Survey on Internet of Things (IoT) Toward 5G Wireless Systems. IEEE Internet of Things Journal, 7(1), 16-32. https://doi.org/10.1109/JIOT.2019.2948888

Copeland , R., & Crespi, N. (2011). Modelling multi-MNO business for MVNOs in their evolution to LTE VoLTE & advanced policy. 15th international conference on intelligence in next generation networks, (pp. 295-300). https://doi.org/10.1109/ICIN.2011.6081092

COSMOS GROUP. (2021). Cosmos Project. Retrieved from https://cosmos-lab.org/

Costa-Perez, X., Garcia-Saavedra, A., Li, X., Deiss, T., De la Oliva, A., Di Giglio, A., & Moored, A. (2017). 5G-crosshaul: An SDN/NFV integrated fronthaul/backhaul transport network architecture. IEEE wireless communications, 24(1), 38-45. https://doi.org/10.1109/MWC.2017.1600181WC

CTTC. (2021). 5G-LENA. Retrieved from https://5g-lena.cttc.es/

Curwen, P., & Whalley, J. (2021). 5G: A multigenerational approach. In Understanding 5G mobile networks. Emerald Publishing Limited. https://doi.org/10.1108/978-1-80071-036-820210001

Dahlman, E., Parkyall, S., & Skold, J. (2020). 5G NR: The next generation wireless access technology. Elsevier Science.

Dang, S., Amin, O., Shihada, B., & Alouini, M.-S. (2020). What should 6G be? Nature Electronics, 3(1), 20-29. https://doi.org/10.1038/s41928-019-0355-6

Elayoubi, S., Bedo, J.-S., Filippou, M., Gavras, A., Giustiniano, D., & Iovanna, P. (2017). 5G innovations for new business opportunities. Mobile world congress. Retrieved from https://hal.inria.fr/hal-01488208/

Forescout Technologies. (2017). IoT and OT security research exposes hidden business challenges. Retrieved from https://www.forescout.com/iot_forrester_study/

Foukas, X., Patounas, G., Elmokashfi, A., & Marina, M. (2017). Network slicing in 5G: Survey and challenges. IEEE Communications Magazine, 55(5), 94-100. https://doi.org/10.1109/MCOM.2017.1600951

Fourati, H., Maaloul, R., & Chaari, L. (2021). A survey of 5G network systems: challenges and machine learning approaches. International Journal of Machine Learning and Cybernetics, 12(2), 385-431. https://doi.org/10.1007/s13042-020-01178-4

Ge, X., Zhou, R., & Li, Q. (2019). 5G NFV-based tactile internet for mission-critical IoT services. IEEE Internet of Things, 7(7), 6150-6163. https://doi.org/10.1109/JIOT.2019.2958063

Ghassemian, M., Muschamp , P., & Warren, D. (2020). Experience Building a 5G Testbed Platform. IEEE 3rd 5G world forum (5GWF), (pp. 473–478). https://doi.org/10.1109/5GWF49715.2020.9221109

Giust , F., Costa-Perez, X., & Reznik, A. (2017). Multi-access edge computing: An overview of ETSI MEC ISG. 1, 4. Retrieved from https://futurenetworks.ieee.org/tech-focus/december-2017/multi-access-edge-computing-overview-of-etsi

Giust , F., Sciancalepore , V., Sabella, D., Filippou, M., Mangiante , S., Featherstone, W., & Munaretto D. (2018). Multi-access edge computing: The driver behind the wheel of 5G-connected cars. IEEE Communications Standards Magazine, 2(3), 66-73. https://doi.org/10.1109/MCOMSTD.2018.1800013

Golzarjannat, A., Ahokangas, P., Matinmikko-Blue, M., & Yrjola, S. (2021). A business model approach to port ecosystem. Journal of Business Models, 9(1), 13-19. https://doi.org/10.5278/jbm.v9i1.4261

Gomes J. F., Ahokangas, P., & Mogaddamerad, S. (2016). Business modeling options for distributed network functions virtualization: Operator perspective. European wireless 2016; 22th european wireless conference, (pp. 1-6). Retrieved from https://ieeexplore.ieee.org/abstract/document/7499279/

González , C. (2019). Desafíos de seguridad en redes 5G. 3, 36-45. Retrieved from https://cpic-sistemas.or.cr/revista/index.php/technology-inside/article/view/47/47

Guijarro , L., Pla, V., & Tuffin , B. (2013). Entry game under opportunistic access in cognitive radio networks: A priority queue model. IFIP wireless days (WD), (pp. 1-6). https://doi.org/10.1109/WD.2013.6686476

Guijarro, L., Vidal, J., Pla, V., & Naldi, M. (2019). Economic analysis of a multi-sided platform for sensor-based services in the internet of things. Sensors, 19(2), 373. https://doi.org/10.3390/s19020373

Gupta, M., Legouable, R., Rosello, M., Cecchi, M., Alonso, J., Lorenzo, M., & Carrozzo, G. (2019). The 5G EVE end-to-end 5G facility for extensive trials. IEEE international conference on communications workshops (ICC workshops), (pp. 1-5). https://doi.org/10.1109/ICCW.2019.8757139

Han, B., Feng, D., Ji, L., & Schotten, H. (2017). A profit-maximizing strategy of network resource management for 5G tenant slices. arXiv preprint arXiv:1709.09229. Retrieved from https://arxiv.org/abs/1709.09229

Han, B., Tavade, S., & Schotten , H. (2017). Modeling profit of sliced 5G networks for advanced network resource management and slice implementation. IEEE symposium on computers and communications (ISCC), (pp. 576-581). https://doi.org/10.1109/ISCC.2017.8024590

Hassan, N., Yau, K.-L., & Wu, C. (2019). Edge computing in 5G: A review. IEEE Access, 7, 127276–127289. https://doi.org/10.1109/ACCESS.2019.2938534

Hicham, M., Abghour, N., & Ouzzif, M. (2018). 5G mobile networks based on SDN concepts. International Journal of Engineering and Technology (UAE), 7(4), 2231-2235. http://dx.doi.org/10.14419/ijet.v7i2.18.12194

Ho, T., Tran, N., Kazmi, S., Han, Z., & Hong C. S. (2018). Wireless network virtualization with non-orthogonal multiple access. NOMS 2018-2018 IEEE/IFIP network operations and management symposium, (pp. 1-9). https://doi.org/10.1109/NOMS.2018.8406264

Housenovic, K., Bedi, I., Maddens, S., Bozsoki, I., Daryabwite, D., & Sundberg, N. (2018). Setting the scene for 5G: Opportunities & challenges. International Telecommunications Union. Retrieved from https://www.itu.int/myitu/-/media/Publications/2018-Publications/BDT-2018/En---Setting-the-scene-for-5G--opportunities-and-challenges.pdf

Hu, Y., Patel, M., Sabella , D., Sprecher, N., & Young, V. (2015). Mobile edge computing—a key technology towards 5G. ETSI white paper, 11(11), 1-16. Retrieved from https://www.etsi.org/images/files/etsiwhitepapers/etsi_wp11_mec_a_key_technology_towards_5g.pdf

Hultell, J., Johansson, K., & Markendahl, J. (2004). Business models and resource management for shared wireless networks. IEEE 60th vehicular technology conference, 5, 3393-3397. https://doi.org/10.1109/VETECF.2004.1404693

Hussain, R., Hussain, F., & Zeadally, S. (2019). Integration of vanet and 5G security: A review of design and implementation issues. Future Generation Computer Systems, 101, 843–864. https://doi.org/10.1016/j.future.2019.07.006

Informationsplattform for 5G. (2021). 5G Testbends. Retrieved from https://www.ip45g.de/en/5g-testbeds/

Institute of Telecommunications. (n.d.). Vienna 5G Simulators. Retrieved from https://www.nt.tuwien.ac.at/research/mobile-communications/vccs

ITProPortal. (2019, December). Old vulnerabilities could majorly impact 5G security. Retrieved from https://www.itproportal.com/news/old-vulnerabilities-could-majorly-impact-5g-security/

ITU. (2017). Guidelines for evaluation of radio interface technologies for IMT-2020. ITU-Recommendation M.2412. Retrieved from https://www.itu.int/dms_pub/itu-r/opb/rep/R-REP-M.2412-2017-PDF-E.pdf

Jiang, M., Condoluci, M., Mahmoodi, T., & Guijarro, L. (n.d.). Economics of 5G network slicing: optimal and revenue-based allocation of radio and core resources in 5G. Retrieved from https://nms.kcl.ac.uk/toktam.mahmoodi/files/TWC-16.pdf

Kaloxylos, A. (2018). A survey and an analysis of network slicing in 5G networks. IEEE Communications Standards Magazine, 2(1), 60-65. https://doi.org/10.1109/MCOMSTD.2018.1700072

Kazmi, S., Khan, L., Tran, N., & Hong, C. (2019). 5G networks. In Network Slicing for 5G and Beyond Networks (pp. 1-12). Springer. https://doi.org/10.1007/978-3-030-16170-5_1

Kazmi, S., Tran, N., Ho, T., & Hong, C. (2017). Hierarchical matching game for service selection and resource purchasing in wireless network virtualization. IEEE Communications Letters, 22(1), 121-124. https://doi.org/10.1109/LCOMM.2017.2701803

Khalifa, N., Benhamiche, A., Simonian, A., & Bouillon, M. (2018). Profit and strategic analysis for MNO-MVNO partnership. 2018 IFIP networking conference (IFIP networking) and workshops, (pp. 325-333). https://doi.org/10.23919/IFIPNetworking.2018.8696771

Khan, L.-U., Yaqoob, I., Tran, N., Han, Z., & Hong, C. (2020). Network Slicing: Recent Advances, Taxonomy, Requirements, and Open Research Challenges. IEEE Access, 8, 36009-36028. http://doi.org/10.1109/ACCESS.2020.2975072

Khan, R., Kumar, P., Jayakody, D., & Liyanage, M. (2020). A Survey on Security and Privacy of 5G Technologies: Potential Solutions, Recent Advancements, and Future Directions. IEEE Communications Surveys Tutorials, 22(1), 196- 248. https://doi.org/10.1109/COMST.2019.2933899

Khan, S., Naseem, U., Siraj, H., Razzak, I., & Imran, M. (2020). The role of unmanned aerial vehicles and mmWave in 5G: Recent advances and challenges. Transactions on Emerging Telecommunications Technologies, e4241. https://doi.org/10.1002/ett.4241

Kim, B., & Park, S. (2004). Determination of the optimal access charge for the mobile virtual network operator system. ETRI journal, 26(6), 665-668. https://doi.org/10.4218/etrij.04.0204.0016

Kostopoulos, A., Chochliouros, I., & Spada, M. (2019). Business challenges for service provisioning in 5G networks. International conference on business information systems, (pp. 423-434). https://doi.org/10.1007/978-3-030-20485-3_33

Koumaras, H., Tsolkas, D., Gardikis, G., Gomez, P., Frascolla, V., Triantafyllopoulou, D., & Bosneag, A. (2018). 5genesis: The genesis of a flexible 5G facility. IEEE 23rd international workshop on computer aided modeling and design of communication links and networks (camad), (pp. 1-6). https://doi.org/10.1109/CAMAD.2018.8514956

Laghrissi, A., & Taleb , T. (2018). A survey on the placement of virtual resources and virtual network functions. IEEE Communications Surveys & Tutorials, 21(2), 1409-1434. https://doi.org/10.1109/COMST.2018.2884835

Li, X., Samaka , M., Chan, H., Bhamare, D., Gupta, L., Guo, C., & Jain, R. (2017). Network slicing for 5G: Challenges and opportunities. IEEE Internet Computing, 20-27. https://doi.org/10.1109/MIC.2017.3481355

Lin, Y.-B., Tseng, C.-C., & Wang, M.-H. (2021). Effects of transport network slicing on 5G applications. Future Internet, 13(3), 69. https://doi.org/10.3390/fi13030069

Liu, Y., Yang, X., & Cuthbert, L. (2021). Network slicing with spectrum sharing. Radio Access Network Slicing and Virtualization for 5G Vertical Industrie, 137-166. https://doi.org/10.1002/9781119652434.ch8

Mamadou, A., Toussaint, J., & Chalhoub, G. (2020). Survey on wireless networks coexistence: resource sharing in the 5G era. Mobile Networks and Applications, 25(5), 1749–1764. https://doi.org/10.1007/s11036-020-01564-w

Mathur, H., & Deepa, T. (2021). A Survey on Advanced Multiple Access Techniques for 5G and Beyond Wireless Communications. Wireless Personal Communications, 1–18. https://doi.org/10.1007/s11277-021-08115-w

MathWorks. (2021). 5G Toolbox. Retrieved from https://www.mathworks.com/products/5g.html

METIS. (2020). METIS 2020 Project. Retrieved from https://metis2020.com/

Michalopoulos, D., Doll, M., Sciancalepore, V., Bega , D., Schneider , P., & Rost, P. (2017). Network slicing via function decomposition and flexible network design. 2017 IEEE 28th annual international symposium on personal, indoor, and mobile radio communications (pimrc), (pp. 1-6). https://doi.org/10.1109/PIMRC.2017.8292661

Mohamed, K., Alias, M., Roslee, M., & Raji, Y. (2021). Towards green communication in 5G systems: Survey on beamforming concept. IET Communications, 15(1), 142–154. doi:https://doi.org/10.1049/cmu2.12066

Muller, M., Ademaj, F., Dittrich, T., Fastenbauer, A., Elbal, B., Nabayi, A., & Rupp, M. (2018, September). Flexible multi-node simulation of cellular mobile communications: the Vienna 5G System Level Simulator. EURASIP Journal on Wireless Communications and Networking, 2018(1), 17. https://doi.org/10.1186/s13638-018-1238-7

Navarro-Ortiz, J., Romero-Diaz, P., Sendra , S., Ameigeiras, P., Ramos-Munoz, J., & Lopez-Soler, J. (2020). A survey on 5G usage scenarios and traffic models. IEEE Communications Surveys Tutorials, 22(2), 905-929. https://doi.org/10.1109/COMST.2020.2971781

Next Generation Mobile Network (NGMN) Alliance. (2016). Description of network slicing concept. Retrieved from https://www.ngmn.org/publications/description-of-network-slicing-concept.html

Next Generation Mobile Networks (NGMN) Alliance. (2015). 5G White Paper. Retrieved from https://www.ngmn.org/work-programme/5g-white-paper.html

Nguyen , V.-G., Brunstrom, A., Grinnemo, K.-J., & Taheri, J. (2017). SDN/NFV-based mobile packet core network architectures: A survey. IEEE Communications Surveys & Tutorials, 19(3), 1567-1602. https://doi.org/10.1109/COMST.2017.2690823

Nguyen, D., Pathirana, P., Ding, M., & Seneviratne, A. (2020). Blockchain for 5G and beyond networks: A state of the art survey. Journal of Network and Computer Applications, 102693. https://doi.org/10.1016/j.jnca.2020.102693

Open5GCore. (2021). Open5GCore toolkit. Retrieved from https://www.open5gcore.org/

Open5GS. (2021). Open5GS. Retrieved from https://open5gs.org/open5gs/

Ordonez-Lucena, J., Ameigeiras, P., Lopez , D., Ramos-Munoz, J., Lorca, J., & Folgueira , J. (2017). Network slicing for 5G with SDN/NFV: Concepts, architectures, and challenges. IEEE Communications Magazine, 55(5), 80–87. https://doi.org/10.1109/MCOM.2017.1600935

Pacheco-Paramo, D., & Tello-Oquendo , L. (2020). Delay-aware dynamic access control for mMTC in wireless networks using deep reinforcement learning. Computer Networks, 182, 107493. https://doi.org/10.1016/j.comnet.2020.107493

Pacheco-Paramo, D., Tello-Oquendo, L., Pla, V., & Martinez-Bauset, J. (2019). Deep reinforcement learning mechanism for dynamic access control in wireless networks handling mMTC. Ad Hoc Networks, 94, 101939. https://doi.org/10.1016/j.adhoc.2019.101939

Pham, Q., Fang, F., Ha, V., Piran, M., Le, M., Le, L., & Ding, Z. (2020). A survey of multi-access edge computing in 5G and beyond: Fundamentals, technology integration, and state-of-the-art. IEEE Access, 8, 116974–117017. https://doi.org/10.1109/ACCESS.2020.3001277

Pousttchi, K., & Hufenbach, Y. (2009). Analyzing and categorization of the business model of virtual operators. Eighth international conference on mobile business, (pp. 87-92). https://doi.org/10.1109/ICMB.2009.22

Prabakaran, D., Nizar, S. M., & Kumar, K. S. (2021). Software-defined network (SDN) architecture and security considerations for 5G communications. In Design methodologies and tools for 5G network development and application (pp. 28-43). IGI Global. http://doi.org/10.4018/978-1-7998-4610-9.ch002

Pujol, F., Elayoubi, S., Markendahl, J., & Salahaldin, L. (2016). Mobile telecommunications ecosystem evolutions with 5G. Communications & Strategies(102), 109. Retrieved from https://www.proquest.com/scholarly-journals/mobile-telecommunications-ecosystem-evolutions/docview/1801631914/se-2?accountid=171402

Rayani, M., Glitho, R., & Elbiaze, H. (2020). ETSI multi-access edge computing for dynamic adaptive streaming in information centric networks. Globecom 2020-2020 IEEE global communications conference, (pp. 1-6). https://doi.org/10.1109/GLOBECOM42002.2020.9322209

Romero, J., & Guijarro, L. (2013). Competition between primary and secondary operators with spectrum leasing and optimal spectrum subscription by users. IEEE 24th international symposium on personal, indoor and mobile radio communications (PIMRC workshops), (pp. 143-147). https://doi.org/10.1109/PIMRCW.2013.6707853

Sacoto-Cabrera, E. (2021). Análisis basado en teoría de juegos de modelos de negocio de operadores móviles virtuales en redes 4G y 5G. Universitat Politecnica de Valencia. http://doi.org/10.4995/Thesis/10251/158595

Sacoto-Cabrera, E., Guijarro, L., & Maillé, P. (2020). Game theoretical analysis of a multi-MNO MVNO business model in 5G networks. Electronics, 9(6), 933. https://doi.org/10.3390/electronics9060933

Sacoto-Cabrera, E., Guijarro, L., Vidal, J., & Pla, V. (2020). Economic feasibility of virtual operators in 5G via network slicing. Future Generation Computer System, 109, 172-187. https://doi.org/10.1016/j.future.2020.03.044

Samdanis, K., Costa-Perez, X., & Sciancalepore, V. (2016). From network sharing to multi-tenancy: The 5G network slice broker. IEEE Communications Magazine, 9(6), 32-39. https://doi.org/10.1109/MCOM.2016.7514161

Sanenga, A., Mapunda, G., Jacob, T., Marata , L., Basutli , B., & Chuma, J. (2020). An Overview of Key Technologies in Physical Layer Security. Entropy, 22(11). https://doi.org/10.3390/e22111261

Santos, G., Endo, P., Sadok, D., & Kelner, J. (2020). When 5G meets deep learning: a systematic review. Algorithms, 13(9), 208. https://doi.org/10.3390/a13090208

Selvi, K., & Thamiselvan, R. (2021). Dynamic resource allocation for SDN and edge computing based 5G network. Third international conference on intelligent communication technologies and virtual mobile networks (icicv), (pp. 19-22). https://doi.org/10.1109/ICICV50876.2021.9388468

Shaik, A., Borgaonkar, R., Park, S., & Seifert, J. (2019). New vulnerabilities in 4G and 5G cellular access network protocols: exposing device capabilities. WiSec '19: Proceedings of the 12th Conference on Security and Privacy in Wireless and Mobile Networks, (pp. 221-231). https://doi.org/10.1145/3317549.3319728

Smura, T., Kiiski, A., & Hammainen, H. (2007). Virtual operators in the mobile industry: a techno-economic analysis. NETNOMICS: Economic research and Electronic Networking, 8(1-2), 25-48. http://doi.org/10.1007/s11066-008-9012-3

Song, G., Wang, W., Chen, D., & Jiang, T. (2018). KPI/KQI-driven coordinated multipoint in 5G: Measurements, field trials, and technical solutions. IEEE Wireless Communications, 25(5), 23-29. https://doi.org/10.1109/MWC.2018.1800041

Soós, G., Ficzere, D., Varga, P., & Szalay, Z. (2020). Practical 5G KPI measurement results on a non-standalone architecture. In Noms 2020 - 2020 IEEE/IFIP network operations and management symposium, (pp. 1-5). https://doi.org/10.1109/NOMS47738.2020.9110457

Stallings, W. (2015). Foundations of modern networking: SDN, NFV, QoE, IoT, and Cloud. Addison-Wesley Professional. Retrieved from https://books.google.com/books?id=nL_QCgAAQBAJ

Su, R., Zhang, D., Venkatesan, R., Gong, Z., Li, C., Ding, F., & Zhu, Z. (2019). Resource allocation for network slicing in 5G telecommunication networks: A survey of principles and models. IEEE Network, 33(6), 172-179. https://doi.org/10.1109/MNET.2019.1900024

Tataria, H., Shafi, M., Molisch, A., Dohler, M., Sioland, H., & Tufvesson, F. (2021). 6G Wireless Systems: Vision, Requirements, Challenges, Insights, and Opportunities. Proceedings of the IEEE, 1-34. https://doi.org/10.1109/JPROC.2021.3061701

Tello-Oquendo, L., Akyildiz, I., Lin , S.-C., & Pla , V. (2018). SDN-based architecture for providing reliable internet of things connectivity in 5G systems. 17th annual mediterranean ad hoc networking workshop (med-hoc-net), (pp. 1-8). https://doi.org/10.23919/MedHocNet.2018.8407080

Tello-Oquendo, L., Leyva-Mayorga, I., Pla, V., Martínez-Bauset, J., & Casares-Giner, V. (2015). Analysis of LTE-A random access procedure: A foundation to propose mechanisms for managing the M2M massive access in wireless cellular networks. Workshop on innovation on information and communication technologies (itaca-wiict 2015), (pp. 95-104).

Tello-Oquendo, L., Lin, S.-C., Akyildiz, I., & Pla, V. (2019). Software-defined architecture for QoS-aware IoT deployments in 5G systems. Ad Hoc Networks, 93, 101911. https://doi.org/10.1016/j.adhoc.2019.101911

Tello-Oquendo, L., Vidal Catalá, J.-R., Pla, V., & Martínez Bauset, J. (2018). Extended access barring for handling massive machine type communication (mMTC) deployments. Novasinergia, 1(2), 38-44. https://doi.org/10.37135/unach.ns.001.02.04

Tello-Oquendo, L., Vidal, J.-R., Pla, V., & Guijarro, L. (2018). Dynamic access class barring parameter tuning in LTE-A networks with massive M2M traffic. 17th annual mediterranean ad hoc networking workshop (med-hoc-net), (pp. 1-8). https://doi.org/10.23919/MedHocNet.2018.8407086

Tetcos. (2021). 5G NR. Retrieved from https://www.tetcos.com/5g.html

University of Surrey. (2021). 5G Testbeds. Retrieved from https://www.surrey.ac.uk/institute-communication-systems/facilities/5g-testbed

Varoutas, D., Katsianis, D., Sphicopoulos, T., Stordahl, K., & Welling , I. (2006). On the economics of 3G mobile virtual network operators (MVNOs). Wireless Personal Communications, 36(2), 129-142. http://doi.org/10.1007/s11277-006-0027-5

Vidal, J.-R., Tello-Oquendo, L., Pla, V., & Guijarro, L. (2019). Performance study and enhancement of access barring for massive machine-type communications. IEEE Access, 7, 63745–63759. doi:https://doi.org/10.1109/ACCESS.2019.2917618

Xiong, Z., Zhang, Y., Nivato, D., Deng, R., Wang, P., & Wang, L. (2019). Deep Reinforcement Learning for Mobile 5G and Beyond: Fundamentals, Applications, and Challenges. IEEE Vehicular Technology Magazine, 14(2), 44-52. https://doi.org/10.1109/MVT.2019.2903655

Xu, Y., Gui, G., Gacanin, H., & Adachi, F. (2021). A Survey on Resource Allocation for 5G Heterogeneous Networks: Current Research, Future Trends and Challenges. IEEE Communications Surveys Tutorials, 1-1. https://doi.org/10.1109/COMST.2021.3059896

Yachika, Kaur, P., & Garg, R. (2021, january). A survey on key enabling technologies towards 5G. IOP Conference Series: Materials Science and Engineering, 012011. https://doi.org/10.1088/1757-899x/1033/1/012011

Zhang, Q., Gui , L., Tian, F., & Sun , F. (2017). A caching-based incentive mechanism for cooperative data offloading. IEEE international conference on communications workshops (icc workshops), (pp. 1376-1381). https://doi.org/10.1109/ICCW.2017.7962851

Zhu, Y., Yu, H., Berry, R., & Liu, C. (2019). Cross-network prioritized sharing: an added value MVNO’s perspective. IEEE infocom 2019-ieee conference on computer communications, (pp. 1549-1557). https://doi.org/10.1109/INFOCOM.2019.8737636

Published

2021-06-01 — Updated on 2021-06-15

Versions

Issue

Section

Research Articles and Reviews

How to Cite

5G networks: A review from the perspectives of architecture, business models, cybersecurity, and research developments. (2021). Novasinergia, ISSN 2631-2654, 4(1), 6-41. https://doi.org/10.37135/ns.01.07.01 (Original work published 2021)