Some predictive models of Covid-19 infections for the province of Loja - Ecuador

Authors

DOI:

https://doi.org/10.37135/ns.01.08.04

Keywords:

COVID-19, least squares, logistics model, pandemic, predictive model

Abstract

Loja province, as elsewhere in the world, has been affected by COVID-19, testing the capacity of health systems and the expertise of rulers. Given this scenario, obtaining predictions of the progress of contagion cases is a very important factor when making decisions. To estimate and predict the level of contagions, we used the data provided by some simple models such as the split differences, simple logistic models, a logistic model that includes the confinement ratio and the least squares method. As a basis, the data provided by the Ministry of Public Health of Ecuador were used in a period of 399 days from the appearance of the first cases and their processing was carried out with the GNU Octave Software, version: 5.1.0. The logistic models are unsatisfactory due to the lack of knowledge of some factors and constants, such as the real rate of contagion, recovered, the mobility of infected individuals and their iteration with non-infected individuals, the real proportion of the level of confinement in each political jurisdiction. The least squares method offers better results for making predictions, since it does not make use of rates or proportions and minimizes quadratic error, i.e. it finds the only curve that passes between the points of the actual data.

Downloads

Download data is not yet available.

References

Bhardwaj, R. (2020). A Predictive Model for the Evolution of COVID-19. Transactions of the Indian National Academy of Engineering, 5(2), 133-140. https://bit.ly/3gDcjzD

Borzì, A. (2020). Modelling with Ordinary Differential Equations: A Comprehensive Approach. Chapman and Hall/CRC. https://doi.org/10.1201/9781351190398

Botha, A. E., & Dednam, W. (2020). A simple iterative map forecast of the COVID-19 pandemic. arXiv preprint arXiv:2003.10532. https://bit.ly/3iMly36

Burden, R., Faires, J. & Burden, A. (2017). Análisis Numérico (10ma ed.) USA. Cengage Learning.

Calvas, B. (2021). Datos diarios y acumulativos del COVID-19 para la Provincia de Loja. COVID-19, Provincia de Loja. https://bit.ly/3cMQblg

Chapra, S., & Canale, R. (Ed.). (2015). Numerical Methods for Engineers. McGraw-Hill Education. Cocconi, M., & Roark, G. (2020). Predicción de contagios, recuperaciones y casos fatales de COVID-19 en Argentina a través del uso de modelos de regresión no lineal como base para la planificación de recursos hospitalarios. XIII COINI 2020 UTN FRBA – Congreso Argentino Internacional de Ingeniería Industrial. https://bit.ly/2TG0TTN

Cruz, D. O. (2021). Una perspectiva matemática para el comportamiento del COVID-19 en Boyacá. Revista Habitus. Semilleros de Investigación, 1(1), e11504-e11504. Disponible en: https://bit.ly/3paAEkk

de Assis, A. S., & de Carvalho, V. J. (2020). Logistic Approach to COVID-19 Epidemic Evolution in Brazil. medRxiv. https://doi.org/10.1101/2020.06.22.20135921

Espinola, M., Racchumí, A., Sanca, S., Espinola, S., Arango, P., Saldaña, C., Paredes, J., & Mejico, M. (2020). Pandemia de COVID-19 y efecto de medidas de contención en población peruana: Un modelamiento matemático SIR. Revista Del Cuerpo Médico Del HNAAA, 13(2), 110-115. Doi: https://doi.org/10.35434/rcmhnaaa.2020.132.656

Fernández R. P., Vásconez E., Simbaña K., Gómez L., Izquierdo J. S., Cevallos D., & Ortiz E. (2021). Statistical data driven approach of COVID-19 in Ecuador: R0 and Rt estimation via new method, Infectious Disease Modelling, 6, 232-243. https://doi.org/10.1016/j.idm.2020.12.012

Jebril, N. (2020). World Health Organization declared a pandemic public health menace: a systematic review of the coronavirus disease 2019 “COVID-19”, 24(9), 2784-2795. https://www.psychosocial.com/article/PR290311/25748/

Kim, S., Seo, Y. B., & Jung, E. (2020). Prediction of COVID-19 transmission dynamics using a mathematical model considering behavior changes in Korea. Epidemiology and health, 42, e2020026. https://doi.org/10.4178/epih.e2020026

León, J.R., & Vaca, L. (2021). COVID-19 in Ecuador, a view from the Risk management approach. Geopauta, 5(1), Disponible en: https://bit.ly/3fhUqqv

Martínez, J. L. F. (2020). Un modelo robusto para la predicción ad-futurum de los efectos de

la epidemia del Covid-19. Documentos de trabajo (FEDEA), (7), 1-20. https://bit.ly/3vCnLRK

Mathieu, E., Ritchie, H., Ortiz-Ospina, E., Roser, M., Hasell, J., Appel, C., Giattino, C., & Rodés-Guirao, L. (2021). A global database of COVID-19 vaccinations. Nature human behavior. https://doi.org/10.1038/s41562-021-01122-8

Medina J. F., Cortés, M. E., Cortés, M., Pérez, A. D. C., & Manzano, M. (2020a). Estudio sobre modelos predictivos para la COVID-19 en Cuba. MediSur, 18(3), 431-442. https://bit.ly/3gtAGRq

Medina, J.F., Cortés, M.E., & Cortés, M. (2020). Ajuste de curvas de crecimiento poblacional aplicadas a la COVID-19 en Cuba. Revista Habanera de Ciencias Médicas, 19(Supl.): e3353. https://bit.ly/3gHvzMv

Municipio de Loja. (s.f.). Loja para todos. https://www.loja.gob.ec/contenido/loja OCHA. (2021). Latin America & The Caribbean - Monthly Situation Snapshot. Disponible en: https://acortar.link/9VP5S

Paul, A., Reja, S., Kundu, S., & Bhattacharya, S. (2021). COVID-19 pandemic models revisited with a new proposal: Plenty of epidemiological models outcast the simple population dynamics solution. Chaos, Solitons & Fractals, 144, 110697. https://doi.org/10.1016/j.chaos.2021.110697

Rebollo, S. (2020). Un modelo simple para el número de infectados por COVID-19. Materials matemátics, 2020, 1-12. Disponible en: https://bit.ly/3q8eCPG

Registro Oficial del Ecuador. (2020a). Decreto 1017. Declaratoria del estado de excepción por calamidad pública en todo el territorio nacional. Recuperado de: https://bit.ly/2Sx96ZT

Registro Oficial del Ecuador. (2021). Decreto 1291. Declaratoria del estado de excepción por calamidad pública para 16 provincias por calamidad pública ante el embate del contagio acelerado que producen las nuevas variantes de la COVID-19. Recuperado de: https://bit.ly/2QVJKER

Registro Oficial del Ecuador. (2020b). Decreto 1052. Renovación del estado de excepción por calamidad pública en todo el territorio nacional, por los casos de coronavirus confirmados y número de fallecidos a causa de la COVID-19 en Ecuador. Recuperado de: https://bit.ly/2RO6cQD

Robalino, A. (2021). ecuacovid. Andrab S.A. https://github.com/andrab/ecuacovid

Roda, W. C., Varughese, M. B., Han, D., & Li, M. Y. (2020). Why is it difficult to accurately predict the COVID-19 epidemic?. Infectious Disease Modelling, 5, 271-281. https://doi.org/10.1016/j.idm.2020.03.001

Sanz, I. (2016). Modelos epidemiológicos basados en ecuaciones diferenciales [Trabajo de grado, Universidad de la Rioja]. Disponible en: https://bit.ly/3wG6wzI

Servicio Nacional de Gestión de Riesgos y Emergencias. (2021). Informe de Situación Nacional por COVID-19. Disponible en: https://bit.ly/3fK95tF

WHO. (2021). Weekly epidemiological update on COVID-19. 11 de mayo 2021. Disponible en: https://acortar.link/ub4Nr

Xiang, Y., Jia, Y., Chen, L., Guo, L., Shu, B., & Long, E. (2021). COVID-19 epidemic prediction and the impact of public health interventions: A review of COVID-19 epidemic models. Infectious Disease Modelling. https://doi.org/10.1016/j.idm.2021.01.001

Published

2021-12-01

Issue

Section

Research Articles and Reviews

How to Cite

Some predictive models of Covid-19 infections for the province of Loja - Ecuador. (2021). Novasinergia, ISSN 2631-2654, 4(2), 62-77. https://doi.org/10.37135/ns.01.08.04