Influence of air density on fuel consumption in light-duty vehicles t duty vehicles
DOI:
https://doi.org/10.37135/ns.01.08.09Keywords:
Aerodynamic drag, air density, fuel consumption, lightweight vehicle, model-in-the-loopAbstract
Energy efficiency in light-duty vehicles is an important factor for both automotive companies and end consumers. However, different vehicle brands calculate fuel consumption using automotive industry standards without considering external factors, such as air density. Therefore, the value provided by the manufacturer is a reference value that may differ from the actual value. This study aims to analyze the effect of air density on the fuel consumption of a general-purpose vehicle in Ecuador. To achieve our objective, we performed a Model-in-the-Loop (MIL) simulation. For this study, external factors characteristic of different geographical locations in Ecuador were considered. As a result, it was determined that in the cities evaluated in the coastal region, vehicle fuel consumption was approximately 7.214 L/100 km. In comparison, in the highlands, it was 6.842 L/100 km. Thus, the effect of aerodynamic drag (air density) reduces fuel consumption in the Sierra region by approximately 5%.
Downloads
References
Aparicio, F., Vera, C., & Díaz, V. (1996). Teoría de los vehículos automóviles. Sección de Publicaciones de la ETSII-UPM. Universidad Politécnica de Madrid: España. Disponible en https://es.scribd.com/document/351110516/Teoria-de-Los-Vehiculos-Automoviles
Ben-Chaim, M., Shmerling, E., & Kuperman, A. (2013). Analytic Modeling of Vehicle Fuel Consumption. Energies, 6(1):117–127. https://doi.org/10.3390/en6010117
Ehsani, M., Gao, Y., Longo, S., & Ebrahimi, K. M., (2018). Modern electric, hybrid electric, and fuel cell vehicles: Fundamentals, theory, and design (3rd ed.). Boca Raton, FL: CRC press. https://doi.org/10.1201/9780429504884
Giakoumis, E., (2017). Driving and Engine Cycles. Cham, Switzerland: Springer International Publishing AG. https://doi.org/10.1007/978-3-319-49034-2
Guzmán, A., Cueva, E. J., Peralvo, A., Revelo, M., &Armas, A., (2018). Estudio del rendimiento dinámico de un motor Otto utilizando mezclas de dos tipos de gasolinas “Extra” y “Súper”. Enfoque, 9(4). 208-220. https://doi.org/10.29019/enfoqueute.v9n4.335
Guzzella, L., & Amstutz, A. (2005). The QSS toolbox manual. Institut für Mess-und Regeltechnik, Eidgenössische Technische Hochschule Zürich. Zürich. Retrive from https://vdocuments.mx/qss-tb-manual.html
Guzzella, L., & Onder, C., (2010). Introduction to modeling and control of internal combustion engine systems. Heidelberg, Berlin: Springer-Verlag Berlin Heidelberg. https://doi.org/10.1007/978-3-642-10775-7
Guzzella, L., & Sciarretta, A., (2013). Vehicle propulsion systems: Introduction to modeling and optimization (2nd. ed.). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-74692-8
Instituto Nacional de Meteorologia e Hidrología. (2017). Anuario Metereológico. Obtenido de https://www.inamhi.gob.ec/docum_institucion/anuarios/meteorologicos/Am_2013.pdf
Jiménez, F., Román, A., & Lopéz, M., (2013). Determinación de ciclos de conducción en rutas urbanas fijas. Dyna: Ingeniería e Industría. 88(6):685–92. https://doi.org/10.6036/5751
Jiménez, F., López, J. M., Aparicio, F., & Flores, H. N., (2009) Comparación de tecnologías para la reducción de emisiones contaminantes en autobuses urbanos. Dyna: Ingeniería e Industría. 84(1): 21’25. Recuperado de https://www.revistadyna.com/Articulos/Ficha.aspx?idMenu=a5c9d895-28e0-4f92-b0c2-c0f86f2a940b&Cod=1736&codigoacceso=15aa3863-5ed4-4cb8-90fc-519b41eea5f5
Lamberg, K., Beine, M., Eschmann, M., Otterbach, R., Conrad, M., & Fey, I., (2004). Model-Based testing of embedded automotive software using Mtest (SAE Technical Papers 724). Recuperado de https://ur.booksc.eu/book/71703976/ec8457
Motahhir, S., El Ghzizal, A., Sebti, S., & Derouich, A., (2017). MIL and SIL and PIL Tests for MPPT Algorithm. Cogent Engineering 4(1). https://doi.org/10.1080/23311916.2017.1378475
Nesci, W., Sorrentino, M., Mauramati, F., Arsie, I., Cricchio, A., & Pianese, C., (2015). Application of Willans Line Method for Internal Combustion Engines Scalability towards the Design and Optimization of Eco-Innovation Solutions (Technical Paper 2015-24-2397). SAE International. https://doi.org/10.4271/2015-24-2397
Peña, L. M., & Becerra, L. O., (2010). Impacto de la nueva fórmula de la densidad del aire CIPM-2007 (Reporte SM2010-S1A-3). Centro Nacional de Metrología: Mexico. Recuperado de https://www.cenam.mx/sm2010/info/pmiercoles/sm2010-mp03a.pdf
Plummer, A. R., (2006). Model-in-the-Loop Testing.. Journal of Systems and Control Engineering 220(3):183–99. https://doi.org/10.1243/09596518JSCE207
Soares, R. F., & de Souza, F. J., (2015). The Brazilian Automotive Scenario over the Hatch 2015 Car Models: A View from Aerodynamics (Technical Paper 2015-36-0518). SAE International. https://doi.org/10.4271/2015-36-0518
Stockar, S., Marano, V., Canova, M., Rizzoni, G., & Guzzella, L., (2011). Energy-Optimal Control of Plug-in Hybrid Electric Vehicles for Real-World Driving Cycles. IEEE Transactions on Vehicular Technology 60(7), 2949–2962. https://doi.org/10.1109/TVT.2011.2158565 .
Taipe-Defaz, V. A., Llanes-Cedeño, E. A., Morales-Bayetero, C. F., & Checa-Ramírez, A. E., (2021). Evaluación experimental de un motor de encendido provocado bajo diferentes gasolinas. Ingenius. Revista de Ciencia y Tecnología (26):17–29. https://doi.org/10.17163/ings.n26.2021.02
United States Enviromental Protection Agency (EPA). (n.d). Dynamometer Drive Schedules, Retrieved from https://www.epa.gov/vehicle-and-fuel-emissions-testing/dynamometer-drive-schedules
World Metereological Organization. (2008). Guidelines on Communicating Forecast Uncertainty.