Performance Evaluation of Ventilation Systems in Classrooms: Numerical Study in University Buildings in Panama

Authors

DOI:

https://doi.org/10.37135/ns.01.09.07

Keywords:

Air renewal, buildings, carbon dioxide, dynamic simulation, indoor air quality, mechanical ventilation, natural ventilation, thermal comfort

Abstract

Air quality plays a decisive role in the performance of the occupants of indoor spaces; it is estimated that 30% of a person's life corresponds to their academic training. This research aimed to determine if the ventilation systems in the Technological University of Panama buildings provide appropriate air quality for its students. We evaluated the ventilation performance in passive and mechanical mode; the dynamic interface DesignBuilder simulated case studies. The indicators used were CO2 concentration, indoor air renewal rates, and thermal comfort. The minimum requirements of Panamanian and international standards were used as a reference. The results showed insufficient natural ventilation due to thermal discomfort and high CO2 concentrations. In contrast, mechanical ventilation improved thermal comfort levels, but the CO2 concentration remained slightly outside acceptable limits. These results demonstrated that the buildings are not designed to operate passively, restricting their operation exclusively in mechanical mode.

Downloads

Download data is not yet available.

References

ASHRAE. (2009). Indoor Air Quality Guide: Best Practices for Design, Construction and Commissioning (Pap/Cdr ed.). Recuperado de: https://www.ashrae.org/technical-resources/bookstore/indoor-air-quality-guide

ASHRAE. (2019). ANSI/ASHRAE Standard 62.1-2019: Ventilation for Acceptable Indoor Air Quality. Recuperado de: https://ashrae.iwrapper.com/ASHRAE_PREVIEW_ONLY_STANDARDS/STD_62.1_2019

ASHRAE. (2020). ANSI/ASHRAE Standard 55-2020: Thermal Environmental Conditions for Human Occupancy. Recuperado de: https://ashrae.iwrapper.com/ASHRAE_PREVIEW_ONLY_STANDARDS/STD_55_2020

Ascione, F., De Masi, R. F., Mastellone, M., & Vanoli, G. P. (2021). The design of safe classrooms of educational buildings for facing contagions and transmission of diseases: A novel approach combining audits, calibrated energy models, building performance (BPS) and computational fluid dynamic (CFD) simulations. Energy and Buildings, 230, 110533. https://doi.org/10.1016/j.enbuild.2020.110533

ASHRAE Epidemic Task Force. (2020). Laboratory Subcommittee Guidance Document. Recuperado de: https://www.ashrae.org/file%20library/technical%20resources/covid-19/ashrae-etf---lab-guidance.pdf

Atkinson, J., Chartier, Y., Pessoa-Silva, C.L., Jensen, P., Li, Y., Seto, W.-H., & World Health Organization (2009). WHO Publications/Guidelines: Natural Ventilation for Infection Control in Health-Care Settings. Recuperado de: https://www.who.int/water_sanitation_health/publications/natural_ventilation.pdf

Bakó-Biró, Z., Clements-Croome, D. J., Kochhar, N., Awbi, H. B., & Williams, M. J. (2012). Ventilation rates in schools and pupils’ performance. Building and Environment, 48(1), 215–223. https://doi.org/10.1016/j.buildenv.2011.08.018

Batterman, S., Su, F.-C., Wald, A., Watkins, F., Godwin, C., & Thun, G. (2017). Ventilation rates in recently constructed U.S. school classrooms. Indoor Air, 27(5), 880–890. https://doi.org/10.1111/ina.12384

Calama-González, C. M., León-Rodríguez, Á. L., & Suárez, R. (2019). Indoor Air Quality Assessment: Comparison of Ventilation Scenarios for Retrofitting Classrooms in a Hot Climate. Energies, 12(24), 4607. https://doi.org/10.3390/en12244607

Cruz, M., Querol, X., Alastuey, A., Riediker, M., Felisi, J. M., Beko, G., … Carslaw, N. (2020). Guide for ventilation towards healthy classrooms. Recuperado de: https://scoeh.ch/wp-content/uploads/2021/01/Guide-for-ventilation_Indairpollnet.pdf

D’Ambrosio, F., Bellia, L., Boerstra, A., Dijken, F. Van, Ianniello, E., Lopardo, G., … Romagnoni, P. (2010). Environment and Energy Efficiency in Schools (Part 1), REHVA Guidebook Number vol. 13, REHVA, Brussels, Belgium. Recuperado de: https://www.rehva.eu/eshop/detail/indoor-environment-and-energy-efficiency-in-educational-buildings

DesignBuilder Software (2021). Design Building: Summary Outputs (KPIs). Recuperado de: https://designbuilder.co.uk/helpv6.0/Content/KPIs.htm

European Commitee for Standarization (2006). prEN 13779:2006: Ventilation for non-residential buildings - Performance requirements for ventilation and room-conditioning systems. Recuperado de http://www.cres.gr/greenbuilding/PDF/prend/set4/WI_25_Pre-FV_version_prEN_13779_Ventilation_for_non-resitential_buildings.pdf

Fantozzi, F., & Rocca, M. (2020). An extensive collection of evaluation indicators to assess occupants’ health and comfort in indoor environment. Atmosphere, 11(1), p. 90. https://doi.org/10.3390/atmos11010090

Fisk, W. J. (2017). The ventilation problem in schools: literature review. Indoor Air, 27(6), 1039–1051. https://doi.org/10.1111/ina.12403

Google Earth. (s. f.). Google Earth Universidad Tecnológica de Panamá. Recuperado de: https://earth.google.com/web/search/Universidad+Tecnol%c3%b3gica+de+Panam%c3%a1,+V%c3%ada+Centenario,+Panam%c3%a1/@9.02354187,-79.53286043,65.91719949a,450.7178551d,35y,-21.18805442h,13.26082563t,0r/data=CigiJgokCTB9hRg1AzVAES99hRg1AzXAGaohK5nFuUlAIachK5nFuUnA?hl=es

Hu, H. H. (2012). Computational Fluid Dynamics. In P. K. Kundu, I. M. Cohen & D. R. Dowling (Eds.), Fluid Mechanics (pp. 421–472). Elsevier. https://doi.org/10.1016/B978-0-12-382100-3.10010-1

Ji, Y., Lomas, K. J., & Cook, M. J. (2009). Hybrid ventilation for low energy building design in south China. Building and Environment, 44(11), 2245–2255. https://doi.org/10.1016/j.buildenv.2009.02.015

Jiménez, A. (2021). UF0422: Mantenimiento correctivo de instalaciones de climatización y ventilación-extracción. Recuperado de: https://books.google.com.pa/books?id=RwIwEAAAQBAJ&printsec=frontcover&hl=es&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false

Junta Técnica de Ingeniería y Arquitectura (JTIA), & Asociación Panameña de Aire Acondicionado y Ventilación (APAYRE). (2014). Resolución 117 de 11 de diciembre de 2013: Por medio de la cual se aprueba el Reglamento de Aire Acondicionado y Ventilación para la República de Panamá. Recuperado de: https://www.asamblea.gob.pa/APPS/LEGISPAN/PDF_NORMAS/2010/2013/2013_608_1338.pdf

Ma’bdeh, S. N., Al-Zghoul, A., Alradaideh, T., Bataineh, A., & Ahmad, S. (2020). Simulation study for natural ventilation retrofitting techniques in educational classrooms – A case study. Heliyon, 6(10), e05171. https://doi.org/10.1016/j.heliyon.2020.e05171

Ministerio de Educación de Chile. (1989). Decreto 548: Aprueba Normas para la planta física de los locales educacionales que establecen las exigencias mínimas que deben cumplir los establecimientos reconocidos como cooperadores de la función educacional del Estado, según el nivel y modalidad de la enseñanza que impartan. Recuperado de: https://www.bcn.cl/leychile/navegar?idNorma=14166

Ministerio de Industria, Energía y Turismo del Gobierno de España. Comentarios RITE-2007: Reglamento de Instalaciones Térmicas en los Edificios. (2007). Recuperado de: https://www.idae.es/uploads/documentos/documentos_10540_Comentarios_RITE_GT7_07_2200d691.pdf

Ministerio de Salud de Costa Rica. (2021). LS-SI-014: Lineamientos para sistemas de ventilación y aire acondicionado (COVID-19). Recuperado de: https://www.ministeriodesalud.go.cr/sobre_ministerio/prensa/docs/ls_si_014_lineamientos_sistemas_ventilacion_aire_acondicionado_03062021.pdf

Pita, E. (1994). Acondicionamiento de aire: Principios y sistemas de refrigeración. Recuperado de: https://es.scribd.com/document/509292129/Acondicionamiento-de-Aire-Edward-Pita-2da-Edicion

Poza-Casado, I., Gil-Valverde, R., Meiss, A., & Padilla-Marcos, M. Á. (2021). Impact of Air Infiltration on IAQ and Ventilation Efficiency in Higher Educational Classrooms in Spain. Sustainability, 13(12), 6875. https://doi.org/10.3390/su13126875

Pulimeno, M., Piscitelli, P., Colazzo, S., Colao, A., & Miani, A. (2020). Indoor air quality at school and students’ performance: Recommendations of the UNESCO Chair on Health Education and Sustainable Development & the Italian Society of Environmental Medicine (SIMA). Health Promotion Perspectives, Vol. 10, pp. 169–174. https://doi.org/10.34172/hpp.2020.29

Simanic, B., Nordquist, B., Bagge, H., & Johansson, D. (2019). Indoor air temperatures, CO2 concentrations and ventilation rates: Long-term measurements in newly built low-energy schools in Sweden. Journal of Building Engineering, 25(6), 100827. https://doi.org/10.1016/j.jobe.2019.100827

Sun, Y., Wang, Z., Zhang, Y., & Sundell, J. (2011). In China, Students in Crowded Dormitories with a Low Ventilation Rate Have More Common Colds: Evidence for Airborne Transmission. PLoS ONE, 6(11), e27140. https://doi.org/10.1371/journal.pone.0027140

The American Institute of Architects (AIA). (2021). Risk Management Plan for Buildings - AIA. (April). Recuperado de: https://www.aia.org/resources/6299432-risk-management-plan-for-buildings?editing=true&tools=true

Trebilcock, M., Soto, J., Figueroa, R., & Piderit-Moreno, B. (2016). Metodología para el diseño de edificios educacionales confortables y resilientes. AUS, (20), 70–76. https://doi.org/10.4206/aus.2016.n20-11

United States Environmental Protection Agency (EPA). (1991). Indoor Air Facts No. 4 Sick Building Syndrome. EPA - Air & Radiation (6609J), Research and Development (MD-56), 56, 1–4. Recuperado de: https://www.epa.gov/sites/production/files/2014-08/documents/sick_building_factsheet.pdf

Vartires, A., Damian, A., Olariu, A., Istrate, A., Catalina, T., & Zorilă, E. (2018). Challenges in achieving a high indoor air quality in an educational building. Revista Romana de Inginerie Civila, 9(1), 28–42. Recuperado de: https://www.proquest.com/openview/59015e81a32a57ead207E51a45139f95/1.pdf?pq-origsite=gscholar&cbl=2029207

Wargocki, P., Porras-Salazar, J. A., Contreras-Espinoza, S., & Bahnfleth, W. (2020). The relationships between classroom air quality and children’s performance in school. Building and Environment, 173(February), 106749. https://doi.org/10.1016/j.buildenv.2020.106749

Wargocki, P., & Wyon, D. P. (2013). Providing better thermal and air quality conditions in school classrooms would be cost-effective. Building and Environment, 59, 581–589. https://doi.org/10.1016/j.buildenv.2012.10.007

Williams, S. (2017). Welcome to Your World: How the Built Environment Shapes Our Lives. New York, EE.UU. HarperCollins.

Wisconsin WisDHS. (2019). Carbon Dioxide | Wisconsin Department of Health Services. Retrieved December 14, 2021, from Wisconsin Department of Health Services website: https://www.dhs.wisconsin.gov/chemical/carbondioxide.htm

Published

2022-01-31

Issue

Section

Research Articles and Reviews

How to Cite

Performance Evaluation of Ventilation Systems in Classrooms: Numerical Study in University Buildings in Panama. (2022). Novasinergia, ISSN 2631-2654, 5(1), 100-127. https://doi.org/10.37135/ns.01.09.07