Development of a steganographic algorithm using random numbers

Authors

DOI:

https://doi.org/10.37135/ns.01.11.08

Keywords:

Steganographic algorithm, canny edge, Least Significant Bit, Random numbers, image processing

Abstract

This research aims to reduce noise in images by using steganography based on the LSB (Least Significant Bit) technique, the Canny Edge filter for edge detection, and the generation of random numbers. For this purpose, several indicators were compared, and various statistical tests were applied to test the hypothesis and draw conclusions. To develop the application, we used: Java (programming language), Netbeans (IDE), Beyond Compare (compare hexadecimals), Guiffy ImageDiff (compare differences between pixels in images), StegSecret (perform steganalysis), and Digital Invisible Ink Toolkit (to the calculation of image quality metrics: PSNR and MSE). For this purpose, two prototypes were developed (Prototype I: LSB and Canny Edge; Prototype II: LSB, Canny Edge, and random numbers). The results obtained were compared, resulting in less noise generated when implementing random numbers in the steganographic process.

Downloads

Download data is not yet available.

References

Ayudaley. (2021). Ayudaley. Obtenido de https://ayudaleyprotecciondatos.es/2021/03/17/esteganografia/#Como_funciona_la_esteganografia_digital

Aziz, M., Najaran, M., & Afsar, M. (2015). A cycling chaos-based cryptic-free algorithm for image steganography.

Barnali, B., & Samir, B. (2015). An image steganography method on edge detection using multiple LSB modification technique. Journal of Basic and Applied Research International (págs. 75-80). Calcutta, India: International Knowledge Press. Obtenido de https://www.researchgate.net/publication/328611029_AN_IMAGE_STEGANOGRAPHY_METHOD_ON_EDGE_DETECTION_USING_MULTIPLE_LSB_MODIFICATION_TECHNIQUE/stats

Gaurav, K., & Ghanekar, U. (2018). Image steganography based on Canny edge detection, dilation operator and hybrid coding. Journal of Information Security and Applications (págs. 41-51). Kurukshetra, India: ScienceDirect. doi:https://doi.org/10.1016/j.jisa.2018.05.001

Hempstalk, K. (2022). Sorceforge. Obtenido de http://diit.sourceforge.net/

Isaza, G., Espinosa, C., & Ocampo, S. (2006). Análisis de técnicas esécnicas esécnicas esécnicas esécnicas estttttegegegegeganoganoganoganoganogrrrrráfáfáfáfáficas y esicas y esicas y esicas y esicas y estttttegoanálisis en canalesegoanálisis en canalesegoanálisis en canalesegoanálisis en canalesegoa. Vector, 29-38.

Jumanto, I., & Setiadi, M. (2018). An Enhanced LSB-Image Steganography Using the Hybrid Canny-Sobel Edge Detection. Cybernetics and Information Technologies (págs. 74-88). Sofía, Bulgaria: Institute of Information and Communication Technologies of Bulgarian Academy of Sciences. doi:https://doi.org/10.2478/cait-2018-0029

Kamaldeep, J., Rajkumar, Y., & Sachin, A. (2016). PSNR and MSE based investigation of LSB. 2016 International Conference on Computational Techniques in Information and Communication Technologies (ICCTICT) (págs. 505-509). India: IEEE. doi:10.1109/ICCTICT.2016.7514593

Kaspersky. (2021). Kaspersky. Obtenido de https://www.kaspersky.es/blog/digital-steganography/18791/

Kohei, O., Yasuaki, I., & Koji, N. (2010). Efficient Canny Edge Detection using a GPU. First International Conference on Networking and Computing (págs. 279-280). Hiroshima: Hiroshima University. doi:10.1109/IC-NC.2010.13

Kusuma, E., Indriani, O., Sari, C., Rachmawanto, E., & Setiadi, D. (2017). An imperceptible LSB image hiding on edge region using DES encryption. International Conference on Innovative and Creative Information Technology (ICITech) (págs. 1-6). Salatiga, Indonesia: IEEE. doi:10.1109/INNOCIT.2017.8319132

López, M. (2021). UnoCero. Obtenido de https://www.unocero.com/noticias/esteganografia-para-cifrar-mensajes-en-imagenes/

Méndez, P., Villa, H., & Cisneros, S. (2017). Nuevo algoritmo para la detección de bordes en imágenes para esteganografía. Maskana, 17-29. Obtenido de https://publicaciones.ucuenca.edu.ec/ojs/index.php/maskana/article/view/1449

Mouse, J. (2011). Obtenido de https://www.jc-mouse.net/ingenieria-de-sistemas/esteganografia-lsb-en-java-proyecto-completo

Muñoz, A. (2007). Obtenido de http://stegsecret.sourceforge.net/indexS.html

Netbeans. (2022). Obtenido de https://netbeans.apache.org/

OpenCV. (2021). Open Source Computer Vision. Obtenido de https://docs.opencv.org/3.4/da/d22/tutorial_py_canny.html

Pérez, D. (2019). Generación de números aleatorios. En D. Pérez Palau, Modelado y simulación numérica (págs. 150-190). Rioja: UNIR.

Rosas, M. (2006). Método para la reducción de ruido en imágenes utilizando la Transformada Wavelet Compleja con un algoritmo de Umbral Óptimo. Puebla, México: Bibliotecas UDLAP. Obtenido de http://catarina.udlap.mx/u_dl_a/tales/documentos/meie/rosas_o_mc/

Saini, J. K., & Harsh, K. V. (2013). A hybrid approach for image security by combining encryption and steganography. En IEEE (Ed.), 2013 IEEE Second International Conference on Image Information Processing (ICIIP-2013) (págs. 607-611). Shimla, India: IEEE. doi:10.1109/ICIIP.2013.6707665

Scooter Software. (2022). Obtenido de https://www.scootersoftware.com/

Software Guiffy. (2022). Obtenido de https://www.guiffy.com/Image-Diff-Tool.html

Suárez, P., & Villavicencio, M. (2017). Canny Edge Detection in Cross-Spectral Fused Images. Enfoque UTE, 8, 16-30. doi:10.29019/enfoqueute.v8n1.127

TIOBE. (2022). Obtenido de https://www.tiobe.com/tiobe-index/

Published

2023-01-16

Issue

Section

Research Articles and Reviews

How to Cite

Development of a steganographic algorithm using random numbers. (2023). Novasinergia, ISSN 2631-2654, 6(1), 120-135. https://doi.org/10.37135/ns.01.11.08