Development of a Parameterizable Simulator of 5G-New Radio based on Ray Tracing for Planning Urban cells

Authors

DOI:

https://doi.org/10.37135/ns.01.11.05

Keywords:

5G New Radio, Electromagnetic propagation, Electromagnetic reflection, Ray Tracing, Simulation

Abstract

Nowadays, the 5G New Radio broadband technology has begun to be deployed. Therefore, new tools focused on studying the standard and propagation conditions are needed. In this context, the development of a 5G New Radio simulator that allows experimentation with the different signal parameters, as well as to identify the main characteristics at the link level and wave propagation, is presented. The essential parts of the standard were analyzed and introduced into the software, from which the Physical Downlink Shared Channel and the Physical Uplink Shared Channel could be parametrized. Regarding urban cell planning, two calculations are included: i) SINR maps that allow the visualization of Signal to Noise and Interference Ratio (SINR) for parametrizable numbers of gNodeB, transmission power, downtilt, and so on; ii) Coverage simulation based on ray-tracing in 3D maps that also consider the permittivity and conductivity of buildings and terrain materials. Additionally, for channel characterization, the simulator presents the Power Delay Profile (PDP), and if there is movement, the Doppler shift is represented in the Scattering function. The result is a parameterizable simulator that integrates 5G-NR signal generation and coverage calculations for the deployment of 5G urban cells, with an average difference in the ray-tracing case of 7.11 dB between the measured and calculated values.

Downloads

Download data is not yet available.

References

GPP. (2020). 3GPP TS 38.101-1 V15.11.0. Retrieved from https://www.3gpp.org/ftp/Specs/archive/38_series/38.141-1

G NR and Enhancements. (2022). Elsevier. https://doi.org/10.1016/C2020-0-04150-2

Ahamed, M. M., & Faruque, S. (2021). 5G Network Coverage Planning and Analysis of the Deployment Challenges. Sensors, 21(19), 6608. https://doi.org/10.3390/s21196608

Camargo, J. (2009). Técnica del Trazado de Rayos. 34.

Carneiro de Souza, L., de Souza Lopes, C. H., de Cassia Carlleti dos Santos, R., Cerqueira Sodré Junior, A., & Mendes, L. L. (2022). A Study on Propagation Models for 60 GHz Signals in Indoor Environments. Frontiers in Communications and Networks, 2, 757842. https://doi.org/10.3389/frcmn.2021.757842

Chen, F., Li, X., Zhang, Y., & Jiang, Y. (2020). Design and implementation of initial cell search in 5G NR systems. China Communications, 17(5), 38–49. https://doi.org/10.23919/JCC.2020.05.005

Erceg, V., Fortune, S. J., Ling, J., Rustako, A. J., & Valenzuela, R. A. (1997). Comparisons of a computer-based propagation prediction tool with experimental data collected in urban microcellular environments. IEEE Journal on Selected Areas in Communications, 15(4), 677–684. https://doi.org/10.1109/49.585778

ETSI. (2021). ETSI TS 138 104 V15.13.0.

Fuschini, F., Vitucci, E. M., Barbiroli, M., Falciasecca, G., & Degli-Esposti, V. (2015). Ray tracing propagation modeling for future small-cell and indoor applications: A review of current techniques: RAY TRACING RADIO PROPAGATION MODELING. Radio Science, 50(6), 469–485. https://doi.org/10.1002/2015RS005659

Guttman, E. (2017). 5G New Radio and System Standardization in 3GPP. 16.

ITU. (2005). RECOMENDACIÓN UIT-R P.838-3 – Modelo de la atenuación específica debida a la lluvia para los métodos de predicción. 8.

ITU. (2010). REPORT ITU-R M.2135-1 - Guidelines for evaluation of radio interface technologies for IMT-Advanced. 72.

ITU. (2015). R-REC-P.2040-1-201507-I!!MSW-S.docx. Retrieved from https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.2040-1-201507-I!!PDF-E.pdf

ITU. (2019). RECOMENDACIÓN UIT-R P.840-8 - Atenuación debida a las nubes y a la niebla. 7.

ITU. (2020). Reporte ITU-R M.[IMT-2020.EVAL]. Retrieved from https://www.itu.int/md/R15-IMT.2020-C-0007/en

ITU. (2021). Report ITU-R M.2412 - Guidelines for evaluation of radio interface technologies for IMT-2020. 144.

Mathworks. (2022). 5G Toolbox User’s Guide. Retrieved from https://www.mathworks.com/help/pdf_doc/5g/5g_ug.pdf

Otham, A. (2019). 5G_System_Architecture_and_Implementatio.pdf.

Paz Parra, A. (2013). Electromagnetismo para ingeniería electrónica: campos y ondas. Cali: Facultad de Ingeniería. Departamento de Electrónica y Ciencias de la Computación.

Pérez, S. (2019). El sistema de comunicaciones móviles de próxima generación 5G y su caso de uso IoT. 98.

Popoola, S. I. (2017). Standard Propagation Model Tuning for Path Loss Predictions in Built-Up Environments. 14.

Qualcomm. (2016). whitepaper-making-5g-nr-a-reality.pdf. Retrieved May 23, 2021, from https://www.qualcomm.com/media/documents/files/whitepaper-making-5g-nr-a-reality.pdf

Rappaport, T. S., MacCartney, G. R., Samimi, M. K., & Sun, S. (2015). Wideband Millimeter-Wave Propagation Measurements and Channel Models for Future Wireless Communication System Design. IEEE Transactions on Communications, 63(9), 3029–3056. https://doi.org/10.1109/TCOMM.2015.2434384

Rinaldi, F., Raschellà, A., & Pizzi, S. (2021). 5G NR system design: a concise survey of key features and capabilities. Wireless Networks, 27(8), 5173–5188. https://doi.org/10.1007/s11276-021-02811-y

Samimi, M. K., & Rappaport, T. S. (2016). 3-D Millimeter-Wave Statistical Channel Model for 5G Wireless System Design. IEEE Transactions on Microwave Theory and Techniques, 64(7), 2207–2225. https://doi.org/10.1109/TMTT.2016.2574851

Sharma, P. K., & Singh, R. K. (2010). Comparative Analysis of Propagation Path loss Models with Field Measured Data. International Journal of Engineering Science and Technology, 2, 6.

Sulyman, A. I., Nassar, A. T., Samimi, M. K., Maccartney, G. R., Rappaport, T. S., & Alsanie, A. (2014). Radio propagation path loss models for 5G cellular networks in the 28 GHZ and 38 GHZ millimeter-wave bands. IEEE Communications Magazine, 52(9), 78–86. https://doi.org/10.1109/MCOM.2014.6894456

Xu, G., Dong, C., Zhao, T., Yin, H., & Chen, X. (2021). Acceleration of shooting and bouncing ray method based on OptiX and normal vectors correction. PLOS ONE, 16(6), e0253743. https://doi.org/10.1371/journal.pone.0253743

Yun, Z., & Iskander, M. F. (2015). Ray Tracing for Radio Propagation Modeling: Principles and Applications. IEEE Access, 3, 1089–1100. https://doi.org/10.1109/ACCESS.2015.2453991

Downloads

Published

2023-01-16

Issue

Section

Research Articles and Reviews

How to Cite

Development of a Parameterizable Simulator of 5G-New Radio based on Ray Tracing for Planning Urban cells. (2023). Novasinergia, ISSN 2631-2654, 6(1), 65-94. https://doi.org/10.37135/ns.01.11.05