Impact of pre-treatments and laccase enzyme on the degradation of oxytetracycline spiked milk and sweet whey
DOI:
https://doi.org/10.37135/ns.01.11.01Keywords:
degradation, laccase, milk, oxytetracycline, pretreatmentAbstract
This work aimed to analyze the effect of different pretreatments and the use of laccase on the degradation of oxytetracycline residues in milk and whey. Milk samples containing 200 µM concentration of oxytetracycline were heat treated, coagulated to obtain whey, skimmed, or left untreated. In turn, these were divided into 3 subgroups, which were inoculated with 0.1, 0.2 or 0.3 mg L-1 of laccase. Control samples were taken at time 0 and, after the addition of the enzyme, samples were taken every hour for 6 hours. Extraction and quantification of the antibiotic in the milk or whey samples were performed by high-performance liquid chromatography. Finally, a Repeated Measures ANOVA procedure was applied and the differences between groups were determined with the Bonferroni test. The thermal pretreatments and skimming did not substantially decrease oxytetracycline in milk, while acid coagulation resulted in whey with a reduction of more than 75% of the antibiotic. None of these treatments favored laccase activity. Using double or triple the concentration of laccase throughout the 6-hour study did not increase the degradation of the antibiotic. The use of laccase on raw milk or acid coagulation resulted in antibiotic residues below the limit established by the Codex Alimentarius so that the milk or whey could be disposed of directly into the environment or used for animal feed
Downloads
References
Alsager, O., Alnajrani, M., Abuelizz, H., & Aldaghmani, I. (2018). Removal of antibiotics from water and waste milk by ozonation: kinetics, byproducts, and antimicrobial activity. Ecotoxicology And Environmental Safety, 158, 114-122. https://doi.org/10.1016/j.ecoenv.2018.04.024
Batt, A., Bruce, I., & Aga, D. (2006). Evaluating the vulnerability of surface waters to antibiotic contamination from varying wastewater treatment plant discharges. Environmental Pollution, 142(2), 295-302. https://doi.org/10.1016/j.envpol.2005.10.010
Bilal, M., Lam, S.S., & Iqbal, H.M.N. (2022). Biocatalytic remediation of pharmaceutically active micropollutants for environmental sustainability. Environmental Pollution, 293, 118582. https://doi.org/10.1016/j.envpol.2021.118582
Blair-González, J., Contreras-Villacura, E., Carvajal Guevara, A., & Palma Toloza, C. (2021). Oxytetracycline removal by biological/chemical activated mesoporous carbon. Microporous and Mesoporous Materials, 327, 111384. https://doi.org/10.1016/j.micromeso.2021.111384
Cabizza, R., Rubattu, N., Salis, S., Pes, M., Comunian, R., & Paba, A. et al. (2018). Impact of a thermisation treatment on oxytetracycline spiked ovine milk: Fate of the molecule and technological implications. LWT, 96, 236-243. https://doi.org/10.1016/j.lwt.2018.05.026
Cabizza, R., Rubattu, N., Salis, S., Pes, M., Comunian, R., & Paba, A. et al. (2017). Transfer of oxytetracycline from ovine spiked milk to whey and cheese. International Dairy Journal, 70, 12-17. https://doi.org/10.1016/j.idairyj.2016.12.002
Fletouris, D., Papapanagiotou, E., & Nakos, D. (2008). Liquid chromatographic determination and depletion profile of oxytetracycline in milk after repeated intramuscular administration in sheep. Journal of Chromatography B, 876(1), 148-152. https://doi.org/10.1016/j.jchromb.2008.10.026
Gómez, M. (Julio de 2017). Validación de métodos de cribado para la detección de antibióticos en lactosuero de cabra. Tesis de maestría, Universidad Politécnica de Valencia, España, (Tesis de Master). http://hdl.handle.net/10251/87168
Hakk, H., Shappell, N., & Lupton, S. (2016). Distribution of animal drugs between skim milk and milk fat fractions in spiked whole milk: understanding the potential impact on commercial milk products. Journal of Agricultural and Food Chemistry, 64(1), 326-335. https://doi.org/10.1021/acs.jafc.5b04726
Homem, V., & Santos, L. (2011). Degradation and removal methods of antibiotics from aqueous matrices–a review. Journal of environmental management, 92(10), 2304-2347. https://doi.org/10.1016/j.jenvman.2011.05.023
Jeon, M., Kim, J., Paeng, K. J., Park, S. W., & Paeng, I. R. (2008). Biotin–avidin mediated competitive enzyme-linked immunosorbent assay to detect residues of tetracyclines in milk. Microchemical Journal, 88(1), 26-31. https://doi.org/10.1016/j.microc.2007.09.001
Kitazono, Y., Ihara, I., Yoshida, G., Toyoda, K., & Umetsu, K. (2012). Selective degradation of tetracycline antibiotics present in raw milk by electrochemical method. Journal of hazardous materials, 243, 112-116. https://doi.org/10.1016/j.jhazmat.2012.10.009
Lindmark-Månsson, H., & Åkesson, B. (2000). Antioxidative factors in milk. British Journal of Nutrition, 84(S1), 103-110. https://doi.org/10.1017/S0007114500002324
Margot, J., Maillard, J., Rossi, L., Barry, D. A., & Holliger, C. (2013). Influence of treatment conditions on the oxidation of micropollutants by Trametes versicolor laccase. New biotechnology, 30(6), 803-813. https://doi.org/10.1016/j.nbt.2013.06.004
Martínez-Costa, J. I., Rivera-Utrilla, J., Leyva-Ramos, R., Sánchez-Polo, M., & Velo-Gala, I. (2018). Individual and simultaneous degradation of antibiotics sulfamethoxazole and trimethoprim by UV and solar radiation in aqueous solution using bentonite and vermiculite as photocatalysts. Applied Clay Science, 160, 217-225. https://doi.org/10.1016/j.clay.2017.12.026
Mata, G., Salmones, D., & Savole, J. (2017). Las enzimas lignocelulolíticas de Pleurotus spp. En S. José, & R. Daniel, La biología, el cultivo y las propiedades nutricionales y medicinales de las setas Pleurotus spp (págs. 68-75). Chiapas: ECOSUR. Obtenido de https://bibliotecasibe.ecosur.mx/sibe/book/000042177
Ozdemir, Z., Tras, B., & Uney, K. (2018). Distribution of hydrophilic and lipophilic antibacterial drugs in skim milk, cream, and casein. Journal of Dairy Science, 101(12), 10694-10702. https://doi.org/10.3168/jds.2018-14766
Quintanilla, P., Doménech, E., Escriche, I., Beltrán, M. C., & Molina, M. P. (2019). Food safety margin assessment of antibiotics: Pasteurized goat's milk and fresh cheese. Journal of Food Protection, 82(9), 1553-1559. https://doi.org/10.4315/0362-028X.JFP-18-434
Quintanilla, P., Cornacchini, M., Hernando, M.I., Molina, M.P., & Escriche, I. (2020). Impact of the presence of oxytetracycline residues in milk destined for the elaboration of dairy products: The specific case of mature goat cheese. International Dairy Journal, 101, 104595-104598. https://doi.org/10.1016/j.idairyj.2019.104595
Rama, A., Lucatello, L., Benetti, C., Galina, G., & Bajraktari, D. (2017). Assessment of antibacterial drug residues in milk for consumption in Kosovo. Journal of Food and Drug Analysis, 25(3), 525-532. https://doi.org/10.1016/j.jfda.2016.07.007
Rodríguez-Delgado, M., Orona-Navar, C., García-Morales, R., Hernandez-Luna, C., Parra, R., Mahlknecht, J., & Ornelas-Soto, N. (2016). Biotransformation kinetics of pharmaceutical and industrial micropollutants in groundwaters by a laccase cocktail from Pycnoporus sanguineus CS43 fungi. International Biodeterioration & Biodegradation, 108, 34-41. https://doi.org/10.1016/j.ibiod.2015.12.003
Sathishkumar, P., Mohan, K., Ganesan, A.R., Govarthanan, M., Yusoff, A.R.M., & Gu, F.L. (2021). Persistence, toxicological effect and ecological issues of endosulfan: a review. Journal of Hazardous Materials. 416, 125779. https://doi.org/10.1016/j.jhazmat.2021.125779
Shappell, N. W., Shelver, W. L., Lupton, S. J., Fanaselle, W., Van Doren, J. M., & Hakk, H. (2017). Distribution of animal drugs among curd, whey, and milk protein fractions in spiked skim milk and whey. Journal of Agricultural and Food Chemistry, 65(4), 938-949. https://doi.org/10.1021/acs.jafc.6b04258
Schewe, R. L., & Brock, C. (2018). Stewarding dairy herd health and antibiotic use on US Amish and Plain Mennonite farms. Journal of Rural Studies, 58, 1-11. https://doi.org/10.1016/j.jrurstud.2017.12.023
Tiseo, K., Huber, L., Gilbert, M., Robinson, T. P., & Van Boeckel, T. P. (2020). Global Trends in Antimicrobial Use in Food Animals from 2017 to 2030. Antibiotics, 9(12),918. https://doi.org/10.1073/pnas.1503141112
Van Boeckel, T. P., Brower, C., Gilbert, M., Grenfell, B. T., Levin, S. A., Robinson, T. P., Teillant, A. & Laxminarayan, R. (2015). Global trends in antimicrobial use in food animals. Proceedings of the National Academy of Sciences, 112, 5649-5654. https://doi.org/10.1073/pnas.1503141112
Ziv, G., & Rasmussen, F. (1975). Distribution of labeled antibiotics in different components of milk following intramammary and intramuscular administrations. Journal of Dairy Science, 58(6), 938-946. https://doi.org/10.3168/jds.S0022-0302(75)84660-1
Zimmermann, J., Binci, A., & Nagel, O. (2013). Efecto de los residuos de antibióticos presentes en suero de leche sobre cultivos agrícolas característicos de Argentina. In VII Congreso de Medio Ambiente. (págs. 12-14). La Plata, Asociación de Universidades Grupo Montevideo. Obtenido de http://sedici.unlp.edu.ar/handle/10915/26584