Analysis of the size effect on the flexural behavior of concrete elements reinforced with plastic fibers
DOI:
https://doi.org/10.37135/ns.01.14.09Keywords:
Efecto tamaño, hormigón reforzado con fibras, coeficiente de orientación, tracción por flexiónAbstract
The influence of the size effect on the mechanical properties of concrete is a question studied several decades ago, however, research does not allow us to have a clear idea of how this phenomenon affects the mechanical properties of fiber-reinforced concrete. The present investigation describes the influence of the size effect on the flexural behavior of concrete reinforced with polypropylene fibers. For the analysis, simple concrete reinforced with macro synthetic polypropylene fibers (HRFP) with 3 and 6 kg/m3 of fibers was designed. Prismatic beam-type specimens were made with three different sizes: 100x100x350 mm, 100x200x650 mm and 100x300x950 mm, which were tested in 4-point bending. Stress vs. deflection graphs were made and the orientation coefficient in the fracture plane was calculated. The results indicate that both the maximum resistance reached at the limit of proportionality and the post-cracking residual resistance decrease with increasing specimen size, demonstrating the influence of the size effect.
Downloads
References
Akram, A. (2021). Size effect at testing strength properties of concrete. Budownictwo i Architektura, 20(4), 37–46.
Alberti, M. G., Enfedaque, A., & Gálvez, J. C. (2016). Fracture mechanics of polyolefin fibre reinforced concrete: Study of the influence of the concrete properties, casting procedures, the fibre length and specimen size. Engineering Fracture Mechanics, 154, 225–244. https://doi.org/10.1016/J.ENGFRACMECH.2015.12.032
Alberti, M. G., Enfedaque, A., Gálvez, J. C., & Agrawal, V. (2016). Fibre distribution and orientation of macro-synthetic polyolefin fibre reinforced concrete elements. Construction and Building Materials, 122, 505–517. https://doi.org/10.1016/J.CONBUILDMAT.2016.06.083
Alberti, M. G., Gálvez, J. C., Enfedaque, A., Picazo, A., & Ramírez, W. J. (2022). Mixed mode fracture of polyolefin fibre reinforced concrete. Theoretical and Applied Fracture Mechanics, 122, 103560. https://doi.org/10.1016/J.TAFMEC.2022.103560
American Society for Testing and Materials. (2010). ASTM C78-09 Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading). Recuperado de: https://www.astm.org/standards/c78
American Society for Testing and Materials. (2017). ASTM C39/C39M Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. Recuperado de: https://www.astm.org/c0039_c0039m-03.html
American Society for Testing and Materials. (2019a). ASTM C31 / C31M Standard Test Practice for Making and Curing Concrete Test Specimens in the Field. In American Society for Testing and Materials. Recuperado de: https://www.astm.org/astm-tpt-167.html
American Society for Testing and Materials. (2019b). ASTM C1609/C1609M Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete (Using Beam With Third-Point Loading). Recuperado de: https://www.astm.org/c1609_c1609m-12.html
Andries, J., Itterbeeck, P., Vandewalle, L., & Van Gysel, A. (mayo de 2015). Influence of concrete flow on spatial distribution and orientation of fibres in steel fibre reinforced self-compacting concrete. In fib symposium, Copenhagen, Denmark.
Aragón Matamoros, D. J., & Navas Carro, A. (2015). Medición de la resistencia a la compresión del concreto mediante cilindros de 100 por 200 mm y de 150 por 300 mm para el control de calidad de obras. Infraestructura Vial, (25). https://kerwa.ucr.ac.cr/handle/10669/13599.
Bažant, Z. P. (1984). Size Effect in Blunt Fracture: Concrete, Rock, Metal. Journal of Engineering Mechanics, 110(4), 518–535. https://doi.org/10.1061/(ASCE)0733-9399(1984)110:4(518)
Bažant, Z. P., G Barr, B. I., de Borst, R., Burtscher, S., Buyukozturk, O., Carol, I., Carpinteri, A., Chiaia, B., Dempsey, J. P., Elices, M., Ferro, G., Gettu, R., Gopalaratnam, V. S., Huet, C., Jirásek, M., McCabe, S. L., Mihashi, H., Nemati, K. M., Planas, J., … Xi, Y. (2004). Quasibrittle fracture scaling and size effect. Materials and Structures, (37), 547–568.
Bentur, A., & Mindess, S. (1990). Fibre Reinforced Cementitious Composites, 2nd ed. Taylor and Francis Group. Florida.
Cifuentes Bulté, H. (2010). Análisis del comportamiento en fractura y del efecto de borde en hormigones de altas prestaciones reforzados con fibras de polipropileno (tesis doctoral). Universidad de Sevilla. España.
Du, X., & Jin, L. (2021). Effect in Concrete Materials and Structures. Springer Singapore.
Dupont, D., & Vandewalle, L. (2005). Distribution of steel fibres in rectangular sections. Cement and Concrete Composites, 27(3), 391–398. https://doi.org/10.1016/J.CEMCONCOMP.2004.03.005
Escobar-Hurtado, J. S., Guerra-Mera, J. C., & Eguez-Álava, H. E. (2023). Tamaño máximo del agregado y su influencia en la porosidad de un hormigón elaborado con fibra de vidrio. Revista Científica INGENIAR: Ingeniería, Tecnología e Investigación. 6(11), 2–17. https://doi.org/10.46296/IG.V6I11EDESPMAYO.0095
Ghasemi, M., Ghasemi, M. R., & Mousavi, S. R. (2018). Investigating the effects of maximum aggregate size on self-compacting steel fiber reinforced concrete fracture parameters. Construction and Building Materials, 162, 674–682. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2017.11.141
Guzmán, E., & Gallardo, R. (1997). Comparación de resultados de resistencias a compresión del hormigón empleando cilindros de dimensiones no estandarizadas. Ingeniería e Investigación, 38, 41-55.
Mahmud, G. H., Yang, Z., & Hassan, A. M. T. (2013). Experimental and numerical studies of size effects of Ultra High Performance Steel Fibre Reinforced Concrete (UHPFRC) beams. Construction and Building Materials, 48, 1027–1034. https://doi.org/10.1016/J.CONBUILDMAT.2013.07.061
García Alberty, M. (2015). Polyolefin fibre-reinforced concrete: from meterial behaviour to numerical and design considerations (tesis doctoral). Universidad Politécnica de Madrid. Madrid, España.
Martinie, L., Lataste, J.-F., & Roussel, N. (2015). Fiber orientation during casting of UHPFRC: electrical resistivity measurements, image analysis and numerical simulations. Materials and Structures, 48(4), 947–957. https://doi.org/10.1617/s11527-013-0205-3
Martinie, L., & Roussel, N. (2011). Simple tools for fiber orientation prediction in industrial practice. Cement and Concrete Research, 41(10), 993–1000. https://doi.org/10.1016/J.CEMCONRES.2011.05.008
Medina, F., & Cifuentes, H. (2007). Hormigón reforzado con fibras de polipropileno. Influencia de la ductilidad de la fibra sobre la fragilidad y el efecto tamaño. Anales de La Mecánica de Fractura, 1, 215-220.
Noghabai, K. (2000). Beams of Fibrous Concrete in Shear and Bending: Experiment and Model. Journal of Structural Engineering, 126(2), 243–251. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:2(243)
Paniagua Murillo, K. J., & Villalobos Ramírez, F. I. (2020). Evaluación de una modificación en la norma ASTM C1609 para el estudio de concreto reforzado con fibras sintéticas sometido a flexión. Métodos y Materiales, 10, 1–11. https://doi.org/10.15517/MYM.V10I0.38567
Sarmiento, E., Zirgulis, G., Sanbakk, S., & Geiker, M. (septiembre de 2012). Influence of concrete flow on fibre distribution, orientation and mechanical properties of fibre reinforced concrete. Con 8th RILEM International Symposium of Fibre Reinforced Concrete. Guimaraes, Portugal
Servicio Ecuatoriano de Normalización. (2016). NTE INEN 3063 Hormigón con Fibras de Acero. Determinación de la Resistencia a la Tracción por Flexión (Límite de Proporcionalidad (lop), Resistencia Residual). Recuperado de: https://1library.co/document/q5mx4oww-nte-inen.html
Vega, A., Gálvez, J., & García, M. (2018). Estudio del efecto de tamaño en el comportamiento en flexión de elementos de hormigón reforzado con fibras de poliolefina (tesis de maestría). Universidad Politécnica De Madrid. Madrid, España.
Yoo, D. Y., Kim, S., Park, G. J., Park, J. J., & Kim, S. W. (2017). Effects of fiber shape, aspect ratio, and volume fraction on flexural behavior of ultra-high-performance fiber-reinforced cement composites. Composite Structures, 174, 375–388. https://doi.org/10.1016/J.COMPSTRUCT.2017.04.069
Monetti, D., Torrijos, M., Giaccio, G., & Zerbino, G. M. (2011). Respuesta post fisuración de hormigones reforzados con fibras. I Jornadas de Investigación y Transferencia de la Facultad de Ingeniería. La Plata, Argentina.