Isotope Effects of Light and Heavy Water on Hydrophobic Interactions

Authors

  • Navinkumar J. Patil
  • Paola Gabriela Vinueza

DOI:

https://doi.org/10.37135/unach.ns.001.03.01

Keywords:

Heavy Water (D2O), Hydrophobic Interactions, Isotope Effects, Light Water (H2O), Surface Forces Apparatus (SFA)

Abstract

Physiochemical properties of light water (H2O) and heavy water (D2O) differ to some extent due to the differences originate in isotope effects. To better understand the isotope effects on hydrophobic interactions, we report the direct experimental comparison of hydrophobic interactions in light water versus heavy water in extended molecularly smooth hydrophobized mica surfaces using a Surface Forces Apparatus (SFA). In this study, we synthesized molecularly smooth, easily reproducible and stable hydrophobic surfaces by deposition of perfluorodecyltrichlorosilane (FDTS) monolayers on plasma activated mica surfaces by using molecular vapor deposition (MVD) technique. The wettability and surface morphology of the FDTS-coated mica samples were directly monitored by using a contact angle cell and an atomic force microscope (AFM). Instability in the force-curve are observed during both approach and retraction of surfaces in SFA experiments and our preliminary force-spectroscopy experiments demonstrated that the magnitude of hydrophobic interaction between FDTS-coated mica surfaces was 20% stronger in heavy water than in light water. Our results indicate that the force-distance profiles obtained for both the cases of H2O and D2O could not be reasonably described by the classical Derjaguin−Landau−Verwey−Overbeek (DLVO) theory and the strong adhesion measured between the interacting FDTS-FDTS layers is dominated by the hydrophobic interactions.

Downloads

Download data is not yet available.

References

- Algara-Siller, G., Lehtinen, O., Wang, F. C., Nair, R. R., Kaiser, U.,Wu, H. A., Geim, A. K. & Grigorieva, I. V. (2015). Square ice in graphene nanocapillaries. Nature, 519(7544), 443-445.

- Barthlott, W. & Neinhuis, C. (1997). Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 202(1), 1-8.

- Breslow, R. (1991). Hydrophobic Effects on Simple Organic-Reactions in Water. Acc Chem Res, 24(6), 159-164.

- Ceriotti, M., Fang, W., Kusalik, P. G., McKenzie, R. H., Michaelides, A., Morales, M. A. & Markland, T. E. (2016). Nuclear Quantum Effects in Water and Aqueous Systems: Experiment, Theory, and Current Challenges. Chem Rev, 116(13), 7529-7550.

- Chandler, D. (2005). Interfaces and the driving force of hydrophobic assembly. Nature, 437(7059), 640-647.

- Claesson, P. M., Kjellander, R., Stenius, P. & Christenson, H. K. (1986). Direct measurement of temperature-dependent interactions between non-ionic surfactant layers. J Chem Soc Faraday Trans I,82, pp. 2735-2746. doi: 10.1039/F19868202735

- Craig, V.S.J. (2011). Very small bubbles at surfaces-the nanobubble puzzle. Soft Matter, 7(1), 40-48.

- De Marco, L., Carpenter, W., Liu, H. C., Biswas, R., Bowman, J. M. & Tokmakoff, A. (2016). Differences in the Vibrational Dynamics of H2O and D2O: Observation of Symmetric and Antisymmetric Stretching Vibrations in Heavy Water. J Phys Chem Lett, 7(10), 1769-1774.

- Defante, A.P., Burai, T. N., Becker, M. L. & Dhinojwala, A. (2015). Consequences of Water between Two Hydrophobic Surfaces on Adhesion and Wetting. Langmuir, 31(8), 2398-2406.

- Donaldson, S. H., Royne, A., Kristiansen, K., Rapp, M. V., Das, S., Gebbie, M. A., Lee, D. W., Stock, P., Valtiner, M. & Israelachvili, J. (2015). Developing General Interaction Potential for Hydrophobic and Hydrophilic Interactions. Langmuir, 31(7), 2051-2064. doi: 10.1021/la502115g

- Du, M., Zhao, Y., Tian, Y., Li, K. & Jiang, L. (2016). Electrospun Multiscale Structured Membrane for Efficient Water Collection and Directional Transport. Small, 12(8), 1000-1005.

- Efimova, Y. M., Haemers, S., Wierczinski, B., Norde, W. & van Well, A. A. (2007). Stability of globular proteins in H2O and D2O. Biopolymers, 85(3), 264-273.

- Eriksson, J. C. (1989). A phenomenological theory of long-range hydrophobic attraction forces based on a square-gradient variational approach. J Chem Soc, Faraday Trans 2, 85(3): 163-176.

- Gant, T. G. (2014). Using deuterium in drug discovery: leaving the label in the drug. J Med Chem, 57(9), 3595–3611.

- Hu, D. L., Chan, B. & Bush, J. W. M. (2003). The hydrodynamics of water strider locomotion. Nature, 424(6949), 663-666.

- Hummer, G., Garde, S., Garcia, A. E. & Pratt, L. R. (2000). New perspectives on hydrophobic effects. Chem Phys, 258(2-3), 349-370.

- Israelachvili, J. N. & Pashley, R. M. (1984). Measurement of the hydrophobic interaction between two hydrophobic surfaces in aqueous electrolyte solutions. J Colloid Interface Sci, 98(2), 500-514.

- Israelachvili, J. N. (2011). Intermolecular and Surface Forces: Revised Third Edition. Academic Press.

- Israelachvili, J. N. & Pashley, R. (1982). The hydrophobic interaction is long range, decaying exponentially with distance. Nature, 300(5890), 341-342.

- Israelachvili, J. N., Min, Y., Akbulut, M., Alig, A., Carver, G., Greene, W., Kristiansen, K., Meyer, E., Pesika, N., Rosenberg, K. & Zeng, H. (2010). Recent Advances in the Surface Forces Apparatus (SFA) Technique. Rep Prog Phys, 73, 036601.

- Jamadagni, S. N., Godawat, R. & Garde, S. (2011). Hydrophobicity of proteins and interfaces: insights from density fluctuations. Annu Rev Chem Biomol Eng, 2, 147.

- Kauzmann, W. (1959). Some Factors in the Interpretation of Protein Denaturation. Adv Protein Chem, 14, 1-63.

- Kidambi, P. R., Boutilier, M. S. H., Wang, L., Jang, D., Kim, J. & Karnik, R. (2017). Selective nanoscale mass transport across atomically thin single crystalline graphene membranes. Adv Mater, 29(19),1605896.

- Kokkoli, E. & Zukoski, C. F. (1999). Effect of Solvents on Interactions between Hydrophobic Self-Assembled Monolayers. J Colloid Interface Sci, 209(1), 60-65.

- Liu, K. S., Yao, X. & Jiang, L. (2010). Recent developments in bio-inspired special wettability. Chem Soc Rev, 39(8), 3240-3255.

- Ma, C.D., Wang, C., Acevedo-Velez, C., Gellman, S. H. & Abbott, N. L. (2015). Modulation of hydrophobic interactions by proximally immobilized ions. Nature, 517(7534), 347-U443.

- Makhatadze, G. I., Clore, G. M. & Gronenborn, A. M. (1995). Solvent Isotope Effect and Protein Stability. Nat Struct Biol, 2(10), 852-855.

- Marcus, Y. & Ben‐Naim, A. (1985). A study of the structure of water and its dependence on solutes, based on the isotope effects on solvation thermodynamics in water. J Chem Phys, 83(9), 4744-4759.

- McCarty, L. S. & Whitesides, G. M. (2008). Electrostatic charging due to separation of ions at interfaces: Contact electrification of ionic electrets. Angew Chem Int Edit, 47(12), 2188-2207. doi: 10.1002/anie.200701812.

- Mölbert, S. (2003). The Hydrophobic Interaction Modeling Hydrophobic Interactions and Aggregation of Non-Polar Particles in Aqueous Solutions. Doctoral Thesis. Retrieved from https://serval.unil.ch/resource/serval:BIB_R_494.P001/REF.pdf

- Morrone, J. A. & Car, R. (2008). Nuclear Quantum Effects in Water. Phys. Rev. Lett. 101(1), 017801.

- Oakenfull, D. and Fenwick, D. E. (1975). Hydrophobic Interaction in Deuterium-Oxide. Aust J Chem, 28(4), 715-720.

- Parker, A. R. & Lawrence, C. R. (2001). Water capture by a desert beetle. Nature, 414(6859), 33-34.

- Patel, A. J. & Garde, S. (2014). Efficient method to characterize the context-dependent hydrophobicity of proteins. J Phys Chem B, 118(6), 1564-1573.

- Rasaiah, J. C., Garde, S. & Hummer, G. (2008). Water in nonpolar confinement: From nanotubes to proteins and beyond. Annu Rev Phys Chem, 59, 713-740.

- Remsing, R. C., Xi, E., Vembanur, S., Sharma, S., Debenedetti, P. G., Garde, S. & Patel, A. J. (2015). Pathways to dewetting in hydrophobic confinement. P Natl Acad Sci USA, 112(27), 8181-8186.

- Røn, T., Javakhishvili, I., Patil, N. J., Jankova, K., Zappone, B., Hvilsted, S. & Lee, S. (2014). Aqueous lubricating properties of charged (ABC) and neutral (ABA) triblock copolymer chains. Polymer, 55(19), 4873-4883.

- Saykally, R. J. (2013). AIR/WATER INTERFACE Two sides of the acid-base story. Nat Chem, 5(2), 82-84. doi: 10.1038/nchem.1556

- Soper, A. K. & Benmore, C. J. (2008). Quantum Differences between Heavy and Light Water. Phys Rev Lett, 101, 065502.

- Strazdaite, S., Versluis, J., Backus, E. F. G and Bakker H. J. (2014). The enhanced ordering of water at hydrophobic surfaces. J Chem Phys, 140(5), 054711.

- Tabor, R. F., Grieser, F., Dagastine, R. R. & Chan, D. Y. C. (2014). The hydrophobic force: measurements and methods. Phys Chem Chem Phys, 16(34), 18065-18075.

- Tadmor, R., Chen, N. & Israelachvili, J. N. (2003), Thickness and refractive index measurements using multiple beam interference fringes (FECO). J Colloid Interface Sci, 264(2), 548-553.

- Tanford, C. (1978). Hydrophobic Effect and Organization of Living Matter. Science, 200(4345), 1012-1018.

- Thomas, L. L., Tirado-Rives, J. & Jorgensen, W. L. (2010). Quantum Mechanical/Molecular Mechanical Modeling Finds Diels-Alder Reactions Are Accelerated Less on the Surface of Water Than in Water. J Am Chem Soc, 132(9), 3097-3104. doi: 10.1021/ja909740y

- Verwey, E. J. W. & Overbeek, J. T. (1947). Theory of the Stability of Lyophobic Colloids. Elsevier: NewYork, 51(3), 631-636. doi: 10.1021/j150453a001

- Whitby, M., Cagnon, L., Thanou, M. & Quirke, N. (2008). Enhanced fluid flow through nanoscale carbon pipes. Nano Lett , 8(9), 2632-2637.

- Zappone, B., Patil, N. J., Lombardo, M. & Lombardo, G. (2018). Transient viscous response of the human cornea probed with the Surface Force Apparatus. PLoS One, 13(5), e0197779.

Downloads

Additional Files

Published

2019-06-06

Issue

Section

Research Articles and Reviews

How to Cite

Isotope Effects of Light and Heavy Water on Hydrophobic Interactions. (2019). Novasinergia, ISSN 2631-2654, 2(1), 6-14. https://doi.org/10.37135/unach.ns.001.03.01