Non-destructive Inspection of Voids on Power MOSFET’s

Authors

  • José Brito Facultad de Ingeniería, Universidad Nacional de Chimborazo
  • Felipe Brito Transmissions Department, Coorporación Nacional de Telecomunicaciones
  • Moshe Brito Facultad de Ingeniería, Universidad Nacional de Chimborazo

DOI:

https://doi.org/10.37135/unach.ns.001.03.05

Keywords:

Power MOSFET’s, Quality Control, Software, Tomography, Voids

Abstract

Voids can affect the normal function on Power Metal-Oxide-Semiconductor Field- Effect Transistors (MOSFET’s) if they are over 25% of the total area, this being an important feature in the quality control of voids on the manufacturing process. The experimental method was employed using the Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM-EDS) and microtomography techniques. The scanning electron microscopy with energy dispersive spectroscopy method permitted the quantification of the chemical and physical characteristics of the solder layer in each device. The microtomography method has been employed as a Non-Destructive Inspection (NDI) method on Power MOSFET’s to quantify the voids. The research methodology permitted the quantification of the voids with the aim of inspecting the manufacturing imperfections which can influence the performance of the device. The object-oriented programming was developed using LabView software which allowed improving the voids detection from an image with distortion, quantifying microvoids and macrovoids, locating in the solder layer using the voiding mass center and obtaining the statistic result. The results of analyzing voids demonstrated that the technique and the methodologies employed for this type of defect detection in Power MOSFET’s could represent a suitable NDI tool for quality control.

Downloads

Download data is not yet available.

References

- Bajenescu, T. & Bazu, M. (1999). Reliability of Electronic Components: A Practical Guide to Electronic System Manufacturing. New York: Springer-Verlag, 1 edition. DOI 10.1007/978-3-642-58505-0.

- Bušek, D., Dušek, K., Růžička, D., Plaček, M., Mach, P., Urbánek, J. & Starý, J. (2016). Flux effect on void quantity and size in soldered joints. Microelectronics Reliability, 60(Supplement C), 135–140.

- Chen, L., Paulasto-Krockel, M., Frohler, U., Schweitzer, D. & Pape, H. (2008). Thermal impact of randomly distributed solder voids on Rth-JC of MOSFETs,. 2008 2nd Electronics System-Integration Technology Conference.

- DirectFET-Technology (2017a). DirectFET Technology Inspection Application Note. Retrieved from http://www.irf.com/technical-info/appnotes/an-1080.pdf.

- DirectFET-Technology (2017b). Recommendations for Printed Circuit Board Assembly of Infineon SON Packages. Retrieved from https://www.infineon.com/.

- Dusek, K., Vlach, J., Brejcha, M., Hájková, L., Pavel, Z. & Popísil, L. (2013). Influence of humidity on voids formation inside the solder joint. Advanced Science, Engineering and Medicine, 5(6), 543–547.

- Easton, J., Struk, P. & Rotella, A. (2008). Imaging and Analysis of Void-Defects in Solder Joints Formed in Reduced Gravity Using High-Resolution Computed Tomography,.46th AIAA Aerospace Sciences Meeting and Exhibit.

- Fladischer, K., Mitterhuber, L., Kraker, E., Ginter, D., Rosc, J. & Magnien, J. (2018). A Close Look on Voids in Solder Joints. 2018 24rd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC).

- GEInspection-Technologies (2017). Solder joint inspection and analysis. PCBA Brochure, Retrieved from https://www.gemeasurement.com/.

- Hanke, R., Fuchs, T. & Uhlmann, N. (2008). X-ray based methods for non-destructive testing and material characterization. Nuclear Instruments and Methods in Physics Research Section A, 591(1), 14–18.

- Holt, D. & Joy, D. (1989). SEM Microcharacterization of Semiconductors, volume 12. Academic Press Inc., San Diego, CA 92101, 1 edition. An optional note.

- Katsis, D. & Vanwyk, J. (2006). A thermal, mechanical, and electrical study of voiding in the solder die-attach of power mosfets. IEEE Transactions on Components and Packaging Technologies., 29(1), 127–136.

- Kim, Y. C., Kim, J., Choy, J. H., Park, J. C. & Choi, H. M. (1999). Effects of cobalt silicidation and postannealing on void defects at the sidewall spacer edge of metal–oxide–silicon field-effect transistors. Applied physics letters, 75(9), 1270–1272.

- Lang, D. (2017). AN-9037 - Assembly Guidelines for 8x8 MLP DriverMOS Packaging. Retrieved from http://www.onsemi.com/pub/Collateral/AN-9037.pdf.

- Machin, K. & Webb, S. (1994). Cone-beam x-ray microtomography of small specimens. Physics in Medicine & Biology, 39(10), 1639.

- Manikam, V. R., Paing, S. & Ang, A. (2013). Effects of soft solder materials and die attach process parameters on large power semiconductor dies joint reliability. 2013 IEEE 15th Electronics Packaging Technology Conference (EPTC 2013).

- National-Instrument (2017). IMAQ Vision for LabVIEW. Worldwide Technical Support and Product Information, Retrieved from http://www.ni.com/pdf/manuals/371007a.pdf.

- Pendleton, T., Hunter, L. & Lau, S. H. (2008). Noninvasive Failure Analysis of Passive Electronic Devices in Wireless Modules Using X-ray Microtomography (MicroCT). Conference Proceedings from the 34th International Symposium for Testing and Failure Analysis.

- Ruifen, Z., Tat, Y. K., Huei, Y. L. & Dexter, R. (2014). How to improve void performance in wafer bumping. 2014 IEEE 16th Electronics Packaging Technology Conference (EPTC).

- Saggio, M., Fagone, D. & Musumeci, S. (2000). MDmeshTM: innovative technology for high voltage Power MOSFETs. 12th International Symposium on Power Semiconductor Devices ICs. Proceedings (Cat. o.00CH37094).

- Said, A. F., Bennett, B. L., Karam, L. J. & Pettinato, J. (2010). Robust automatic void detection in solder balls,. 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.

- Saxena, S. & Kumar, M. (2012). Advances in Microelectronics and Photonics, chapter 1, pp. 1–23. Nova Science Publishers Inc.

- Sesek, A., Chambers, O. & Trontelj, J. (2019). Study on the die-attach voids distribution with x-ray and image processing techniques. ASME. J. Electron. Packag., 141(2), 1–7.

- STLife-Augmented (2017). N-channel 950 V, 0.275 W typ., 17.5 A MDmeshTM K5. Power MOSFETs in D2PAK, TO-220FP, TO-220 and TO-247, Retrieved from http://www.st.com.

- STMicroelectronics (2019). Rectifiers thermal management, handling and mounting recommendations. Retrieved from https://www.st.com/.

- Tran, S., Dupont, L. & Khatir, Z. (2017a). Evaluation of multi-void and drain metallization thickness effects on the electro thermal behavior of si mosfet under forward bias conditions. 2017 19th European Conference on Power Electronics and Applications (EPE’17 ECCE Europe), pp. 1–10.

- Tran, S. H., Dupont, L. & Khatir, Z. (2017b). Electrothermal evaluation of single and multiple solder void effects on low-voltage si mosfet behavior in forward bias conditions. IEEE Transactions on Components, Packaging and Manufacturing Technology, 7(3), 396–404.

- Tulevski, G. S., Nuckolls, C., Afzali, A., Graham, T. O. & Kagan, C. R. (2006). Device scaling in sub-100 nm pentacene field-effect transistors. Applied physics letters, 89(183101).

- Turbell, H. (2017). Cone-Beam Reconstruction Using Filtered Backprojection. Retrieved from http://www.divaportal.org/smash/get/diva2:302800/FULLTEXT01.pdf.

- Vlassenbroeck, J., Dierick, M., Masschaele, B., Cnudde, V., Van Hoorebeke, L. & Jacobs, P. (2007). Software tools for quantification of x-ray microtomography at the ugct. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 580(1), 442 – 445.

- Wild, P., Gr¨ozinger, T., Lorenz, D. & Zimmermann, A. (2017). Void formation and their effect on reliability of lead-free solder joints on mid and pcb substrates. IEEE Transactions on Reliability, 66(4), 1229–1237.

Downloads

Additional Files

Published

2019-06-06

Issue

Section

Research Articles and Reviews

How to Cite

Non-destructive Inspection of Voids on Power MOSFET’s. (2019). Novasinergia, ISSN 2631-2654, 2(1), 41-49. https://doi.org/10.37135/unach.ns.001.03.05