Detection of Cd (II) and Pb (II) by anodic stripping voltammetry using glassy carbon electrodes modified with Ag-Hg and Ag-Bi bimetallic alloyed

  • Danny Valera Universidad Simón Bolívar
  • Mireya Sánchez Pontificia Universidad Católica del Ecuador
  • José Domínguez Universidad Simón Bolívar
  • Patricio J. Espinoza-Montero Pontificia Universidad Católica del Ecuador
  • Carlos Velasco-Medina Escuela Politécnica Nacional
  • Patricio Carrera Hidroecuador
  • Lenys Fernández Pontificia Universidad Católica del Ecuador
Palabras clave: Voltamperometría de redisolución anódica de Pb y Cd, Aleación Bimetálica, Electrodos Modificados

Resumen

Presentamos la evaluación de los electrodos de carbono vítreo (GC) modificados con películas de Nafion (Nf) y depósitos bimetálicos de aleaciones Ag-Hg y Ag-Bi. La mayoría de los bimetálicos depositados, con un tamaño promedio de aproximadamente 150 nm, se dispersaron e incrustaron uniformemente dentro de la red del Nafion, mientras que una cantidad mucho menor permaneció encima de las incrustadas sin ninguna orientación regular, como lo indica imágenes de microscopía electrónica de barrido (SEM) y microscopía de fuerza atómica (AFM). Las pruebas de sensibilidad para el electrodo modificado AgBiNf/GC produjeron límites de detección (DL), basados en la variabilidad de una solución en blanco (criterio de 3 s), de 0,78 y 0,66 μg L-1 para Cd (II) y Pb (II), respectivamente; mientras que el DL sobre el electrodo modificado AgHgNf/GC fue 0,17 y 0,24 μg L-1 para Cd (II) y Pb (II), respectivamente. La precisión de la metodología por voltametría de redisolución anódica se verificó mediante el cálculo de porcentajes de recuperación de los dos analitos, expresados como error relativo. Se logró una recuperación del 99% al 92%.

Descargas

La descarga de datos todavía no está disponible.

Citas

Abkenar, S.D. , Hosseini, M., Dahaghin, Z., Salavati-Niasari, M., & Jamali, M.R. (2010). Speciation of chromium in water samples with homogeneous liquid-liquid extraction and determination by flame atomic absorption spectrometry. Bulletin of the Korean Chemical Society, 31(10) 2813-2818.

Abkenar, S.D., Dahaghin, Z., Sadeghi, H.B., Hosseini, M., & Salavati-Niasari, M. (2011). Determination of zinc in water samples by flame atomic absorption spectrometry after homogeneous liquid-liquid extraction. Journal of Analytical Chemistry, 66(6) 612-617.

Bagheri, A., Behbahani, M., Amini, M.M., Sadeghi, O., Tootoonchi, A., & Dahaghin, Z. (2012). Preconcentration and separation of ultra-trace palladium ion using pyridinefunctionalized magnetic nanoparticles. Microchimica Acta, 178(3-4) 261-268.

Bhatluri, K.K., Manna, M.S., Ghoshal, & A.K., Saha, P. (2017). Separation of cadmium and lead from wastewater using supported liquid membrane integrated with in-situelectrodeposition. Electrochimica Acta, 229 1-7.

Borgo, S. D., Jovanovski, V. Pihlar, & B. Hocevar, S. B. (2015). Operation of bismuth film electrode in more acidic medium. Electrochimica Acta, 155 196-200

Cargnelutti, D., Tabaldi, L. A., Spanevello, R. M., de Oliveira Jucoski, G., Battisti, V., Redin, M., & Morsch, V. M. (2006). Mercury toxicity induces oxidative stress in growing cucumber seedlings. Chemosphere, 65(6), 999-1006..

Dahaghin, Z., Mousavi, H.Z., & Sajjadi, S.M. (2017a) . Trace amounts of Cd (II), Cu (II) and Pb (II) ions monitoring using Fe 3 O 4@ graphene oxide nanocomposite modified via 2-mercaptobenzothiazole as a novel and efficient nanosorbent. Journal of Molecular Liquids, 231 386-395.

Dahaghin, Z., Mousavi, & Sajjadi, S.M. (2017b). Synthesis and Application of Magnetic Graphene Oxide Modified with 8‐Hydroxyquinoline for Extraction and Preconcentration of Trace Heavy Metal Ions. Chemistry Select, 2(3) 1282-1289.

Ferreira, M. A., & Barros, A. A. (2002). Determination of As(III) and arsenic(V) in natural waters by cathodic stripping voltammetry at a hanging mercury drop electrode. Analytical Chimica Acta, 459 151-159.

Gumpu, M.B., Sethuraman, S., Krishnan, U.M., & Rayappan, J.B.B. (2015). A review on detection of heavy metal ions in water – an electrochemical approach. Sensors Actuators B Chem., 213 515–533.

Huang, M.-R., Ding, Y.-B., &Li, X.-G. (2014). Combinatorial screening of potentiometric Pb (II) sensors from polysulfoaminoanthraquinone solid ionophore. ACS combinatorial science16 (3) 128-138.

Huang, M.-R., Rao, X.-W., Li, X.-G., & Ding, Y.-B. (2011). Lead ion-selective electrodes based onpolyphenylenediamine as unique solid ionophores. Talanta, 85(3) 1575-1584.

Kefala, G., Economou A., & Voulgaropoulos A. (2004). A study of Nafion-coated bismuth-film electrodes for the determination of trace metals by anodic stripping voltammetry. Analyst, 129 1082 – 1090

Karri, V., Schuhmacher, M., & Kumar, V. (2016). Heavy metals (Pb, Cd, As and MeHg) as risk factors for cognitive dysfunction: A general review of metal mixture mechanism in brain. Environ. Toxicol. Pharmacol, 48, 203-213.

Lin, J., Zhang, F., & Lei, Y. (2016). Dietary intake and urinary level of cadmium and breast cancer risk: A meta-analysis. Cancer Epidemiol, 42 101-107.

Liang, P., Li, J., & Yang, X. (2005). Cloud point extraction preconcentration of trace cadmium as 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone complex and determination by flame atomicabsorption spectrometry. Microchimica Acta, 152(1) 47-51.

Lakshmi, D., Sharma, P. S., & Prasad, B. B. (2007). Imprinted polymer-modified hanging mercury drop electrode for differential pulse cathodic stripping voltammetric analysis of creatine. Biosensors and Bioelectronics, 223302-3308.

Pei, X., Kang, W., Yue, W., Bange, A., Heineman, W. R., & Papautsky, I. (2014). Improving Reproducibility of Lab-on-a-Chip Sensor with Bismuth Working Electrode for Determining Zn in Serum by Anodic Stripping Voltammetry. Journal of the Electrochemical Society, 161 B3160-B3166.

Singh, D.K. & Mishra, S. (2009). Synthesis, characterization and removal of Cd (II) using Cd (II) ion imprinted polymer. Journal of Hazardous Materials, 164(2) 1547-1551.

Valera, D., Sánchez, M., Domínguez, J. R., Alvarado, J., Espinoza-Montero, P. J., Carrera, P., Bonilla, P., Manciati, C.G. González & Fernández L.(2018). Electrochemical determination of lead in human blood serum and urine by anodic strippingvoltammetry using glassy carbon electrodescovered with Ag–Hg and Ag–Bi bimetallic nanoparticles. Anal. Methods, (10) 4114-4121

Wan, M. W., Kan, C. C., Rogel, B. D., & Dalida, M. L. P. (2010). Adsorption of copper (II) and lead (II) ions from aqueous solution on chitosan-coated sand. Carbohydrate Polymers, 80, 891-899.

Xiong, S., Ye, S., Hu, X., & Xie, F. (2016). Electrochemical detection of ultra-trace Cu (II) and interaction mechanism analysis between amine-groups functionalized CoFe2O4/reduced graphene oxide composites and metal ion. Electrochimica Acta, 217,24-33.

Zhang, H.F., Shuang, S.M., Wang, G.Z., Guo, Y.J., Tong, X.L., Yang, P. A., Chen, J., Dong, C., & Qin, Y. (2015). TiO2-graphene hybrid nanostructures by atomic layer deposition with enhanced electrochemical performance for Pb(ii) and Cd(ii) detection. RSCAdv., 5 4343-4349.

Zhu, X., X. Zhu, & Wang, B. (2006). Determination of trace cadmium in water samples by graphite furnace atomic absorption spectrometry after cloud point extraction. Microchimica Acta, 154 (1) 95-100.

Zhu, X. S. C., Gao, J. W., Choi, P. L., & Bishop, C. H. (2004). Ahn, On-chip generated mercury microelectrode for heavy metal ion detection. Lab Chip 5 212-217.
Publicado
2019-12-10
Cómo citar
Valera, D., Sánchez, M., Domínguez, J., Espinoza-Montero, P., Velasco-Medina, C., Carrera, P., & Fernández, L. (2019). Detection of Cd (II) and Pb (II) by anodic stripping voltammetry using glassy carbon electrodes modified with Ag-Hg and Ag-Bi bimetallic alloyed. NOVASINERGIA, ISSN 2631-2654, 2(2), 75-83. https://doi.org/https://doi.org/10.37135/unach.ns.001.04.08
Sección
Artículos