Generación de energía eléctrica y tratamiento de aguas residuales mediante celdas de combustible microbianas
DOI:
https://doi.org/10.37135/ns.01.07.10Palabras clave:
Agua residual, bioelectricidad, celdas de combustible microbianas, electrodos, energía eléctrica, microorganismosResumen
El agua es el recurso vital para los seres vivos, sin embargo, durante los últimos años su calidad se ha deteriorado convirtiéndose en un problema de contaminación a nivel mundial. Por otro lado, la crisis energética no permite que la población tenga una buena calidad de vida, lo que detiene de cierta manera, el desarrollo. Debido a ello, se requiere opciones para el tratamiento de agua residual y generación de energía eléctrica, siendo las celdas de combustible microbianas (MFCs, por sus siglas en inglés) una tecnología emergente que ha permitido una alianza entre las dos problemáticas. Las MFCs, aprovechan el metabolismo de las bacterias para el tratamiento de agua residual generando a su vez energía. En la presente obra se realiza una revisión, en base a investigaciones recientes, de los aspectos más importantes que rigen el funcionamiento de las MFCs, tales como clasificación, componentes, mecanismos de funcionamiento, actividad microbiana y material de electrodos. A partir del análisis de la información recolectada, se puede concluir que la generación de bioelectricidad a partir del tratamiento de aguas residuales es posible con esta tecnología que ha tomado mucha fuerza en los últimos años con resultados alentadores.
Descargas
Referencias
Adelaja, O., Keshavarz, T., & Kyazze, G. (2015). The effect of salinity, redox mediators and temperature on anaerobic biodegradation of petroleum hydrocarbons in microbial fuel cells. Journal of Hazardous Materials, 283, 211-217. https://doi.org/10.1016/j.jhazmat.2014.08.066
Al Lawati, M. J., Jafary, T., Baawain, M. S., & Al-Mamun, A. (2019). A mini review on biofouling on air cathode of single chamber microbial fuel cell; prevention and mitigation strategies. Biocatalysis and Agricultural Biotechnology, 22, 101370. https://doi.org/10.1016/j.bcab.2019.101370
Allami, S., Hasan, B., Redah, M., Hamody, H., & Abd Ali, Z. D. (2018). Using low cost membrane in dual-chamber microbial fuel cells (MFCs) for petroleum refinery wastewater treatment. In Journal of Physics: Conference Series 1032, 012061. IOP Publishing. https://doi.org/10.1088/1742-6596/1032/1/012061
Ancona, V., Caracciolo, A. B., Borello, D., Ferrara, V., Grenni, P., & Pietrelli, A. (2020). Microbial fuel cell: an energy harvesting technique for environmental remediation. International Journal of Environmental Impacts, 3(2), 168-179. https://doi.org/10.2495/EI-V3-N2-168-179
Ardakani, M. N., & Gholikandi, G. B. (2020). Microbial fuel cells (MFCs) in integration with anaerobic treatment processes (AnTPs) and membrane bioreactors (MBRs) for simultaneous efficient wastewater/sludge treatment and energy recovery-A state-of-the-art review. Biomass and Bioenergy, 141, 105726. https://doi.org/10.1016/j.biombioe.2020.105726
Baranitharan, E., Khan, M. R., Yousuf, A., Teo, W. F. A., Tan, G. Y. A., & Cheng, C. K. (2015). Enhanced power generation using controlled inoculum from palm oil mill effluent fed microbial fuel cell. Fuel, 143, 72-79. https://doi.org/10.1016/j.fuel.2014.11.030
Bazdar, E., Roshandel, R., Yaghmaei, S., & Mardanpour, M. M. (2018). The effect of different light intensities and light/dark regimes on the performance of photosynthetic microalgae microbial fuel cell. Bioresource technology, 261, 350-360. https://doi.org/10.1016/j.biortech.2018.04.026
Chellaiah, E.R. (2018). Cadmium (heavy metals) bioremediation by Pseudomonas aeruginosa: A minireview. Applied Water Science, 8. https://doi.org/10.1007/s13201-018-0796-5.
Choi, J., & Ahn, Y. (2013). Continuous electricity generation in stacked air cathode microbial fuel cell treating domestic wastewater. Journal of Environmental Management, 130, 146-152. https://doi.org/10.1016/j.jenvman.2013.08.065
Choi, J., & Ahn, Y. (2015). Enhanced bioelectricity harvesting in microbial fuel cells treating food waste leachate produced from biohydrogen fermentation. Bioresource Technology, 183, 53-60. https://doi.org/10.1016/j.biortech.2015.01.109
Choi, T. H., Won, Y. B., Lee, J. W., Shin, D. W., Lee, Y. M., Kim, M., & Park, H. B. (2012). Electrochemical performance of microbial fuel cells based on disulfonated poly(arylene ether sulfone) membranes. Journal of Power Sources, 220, 269-279. https://doi.org/10.1016/j.jpowsour.2012.07.109
Comeau, Y. Metabolismo Microbiano. En C. M. López, G. Buitrón, H. García, & F. J. Cervantes (EDs.), Tratamiento biológico de aguas residuales: Principios, modelación y diseño (pp. 9-24) IWA publishing. https://doi.org/10.2166/9781780409146 (pp.9-24)
Dannys, E., Green, T., Wettlaufer, A., Madhurnathakam, C. M. R., & Elkamel, A. (2016). Wastewater treatment with microbial fuel cells: a design and feasibility study for scale-up in microbreweries. Journal of Bioprocessing & Biotechniques, 6(1), 1-6. https://doi.org/10.4172/2155-9821.1000267
Deval, A.S., Parikh, H.A., Kadier, A., Chandrasekhar, K., Bhagwat, A.M., & Dikshit, A.K., (2017). Sequential microbial activities mediated bioelectricity production from distillery wastewater using bio-electrochemical system with simultaneous waste remediation. Int. J. Hydrogen Energy 42 (2), 1130–1141. http://dx.doi.org/10.1016/j.ijhydene.2016.11.114.
Flimban, S. G., Hassan, S. H., Rahman, M. M., & Oh, S. E. (2020). The effect of Nafion membrane fouling on the power generation of a microbial fuel cell. International Journal of Hydrogen Energy, 45(25), 13643-13651. https://doi.org/10.1016/j.ijhydene.2018.02.097
Gajda, I., Greenman, J., & Ieropoulos, I. A. (2018). Recent advancements in real-world microbial fuel cell applications. Current Opinion in Electrochemistry, 11, 78-83. https://doi.org/10.1016/j.coelec.2018.09.006
Ganiyu, S. O., Martínez-Huitle, C. A., & Rodrigo, M. A. (2020). Renewable energies driven electrochemical wastewater/soil decontamination technologies: A critical review of fundamental concepts and applications. Applied Catalysis B: Environmental, 270, 118857. https://doi.org/10.1016/j.apcatb.2020.118857
Guo, Y., Wang, G., Zhang, H., Wen, H., & Li, W. (2020). Effects of biofilm transfer and electron mediators transfer on Klebsiella quasipneumoniae sp. 203 electricity generation performance in MFCs. Biotechnology for Biofuels,13. https://doi.org/10.1186/s13068-020-01800-1
Ishii, S. I., Suzuki, S., Norden-Krichmar, T. M., Wu, A., Yamanaka, Y., Nealson, K. H., & Bretschger, O. (2013). Identifying the microbial communities and operational conditions for optimized wastewater treatment in microbial fuel cells. Water research, 47(19), 7120-7130. https://doi.org/10.1016/j.watres.2013.07.048
Jatoi, A. S., Akhter, F., Mazari, S. A., Sabzoi, N., Aziz, S., Soomro, S. A., ... & Ahmed, S. (2021). Advanced microbial fuel cell for waste water treatment—A review. Environmental Science and Pollution Research, 28, 5005-5019. https://doi.org/10.1007/s11356-020-11691-2
Jiang D, Curtis M, Troop E, Scheible, K., McGrath, J., Hu, B., …..Li, B. (2011). A pilot-scale study on utilizing multi-anode/cathode microbial fuel cells (MAC MFCs) to enhance the power production in wastewater treatment. International Journal of Hydrogen Energy. 36. 876–884. https://doi.org/10.1016/j.ijhydene.2010.08.074
Kalathil, S., Patil, S. A., & Pant, D. (2018). Microbial fuel cells: electrode materials. Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry, 309-318. https://doi.org/10.1016/B978-0-12-409547-2.13459-6
Kaur, R., Marwaha, A., Chhabra, V. A., Kim, K. H., & Tripathi, S. K. (2020). Recent developments on functional nanomaterial-based electrodes for microbial fuel cells. Renewable and Sustainable Energy Reviews, 119, 109551. https://doi.org/10.1016/j.rser.2019.109551
Kim, J. M., & Patel, R. (2020). Review on proton exchange membranes for microbial fuel cell application. Membrane Journal, 30(4), 213-227. https://doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.4.213
Kiran, R., & Patil, S. A. (2019). Microbial electroactive biofilms. . In N. Krishnaraj & R. k. Sani (Eds.), Introduction to Biofilm Engineering (pp. 159-186). https://doi.org/10.1021/bk-2019-1323.ch008
Kitafa, B. A., & Al-saned, A. J. O. (2021). A Review on Microbial Fuel Cells. Engineering and Technology Journal, 39(1A), 1-8. https://doi.org/10.30684/etj.v39i1A.1518
Kondaveeti, S., Kim, I. W., Otari, S., Patel, S. K., Pagolu, R., Losetty, V., ... & Lee, J. K. (2019). Co-generation of hydrogen and electricity from biodiesel process effluents. International Journal of Hydrogen Energy, 44(50), 27285-27296. https://doi.org/10.1016/j.ijhydene.2019.08.258
Kracke, F., Vassilev, I., & Krömer, J. O., (2015). Microbial electron transport and energy conservation—the foundation for optimizing bioelectrochemical systems. Frontiers in Microbiology, 6, 575. https://doi.org/10.3389/fmicb.2015.00575
Kumar, G. G., Hashmi, S., Karthikeyan, C., GhavamiNejad, A., Vatankhah‐Varnoosfaderani, M., & Stadler, F. J. (2014). Graphene oxide/carbon nanotube composite hydrogels—versatile materials for microbial fuel cell applications. Macromolecular Rapid Communications, 35(21), 1861-1865. https://doi.org/10.1002/marc.201400332
Kumar, R., Singh, L., & Zularisam, A. W. (2017). Microbial fuel cells: Types and applications. In L. Singh & V. Kalia (Eds.), Waste Biomass Management–A Holistic Approach (pp. 367-384). Springer, Cham. https://doi.org/10.1007/978-3-319-49595-8_16
Kumar, R., Yadav, S., & Patil, S. A. (2020). Bioanode-assisted removal of Hg2+ at the cathode of microbial fuel cells. Journal of Hazardous, Toxic, and Radioactive Waste, 24(4), 04020034. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000533
Lee, Y. Y., Kim, T. G., & Cho, K. S. (2015). Effects of proton exchange membrane on the performance and microbial community composition of air-cathode microbial fuel cells. Journal of Biotechnology, 211, 130-137. https://doi.org/10.1016/j.jbiotec.2015.07.018
Li, B., Zhou, J., Zhou, X., Wang, X., Li, B., Santoro, C., ... & Schuler, A. J. (2014). Surface modification of microbial fuel cells anodes: Approaches to practical design. Electrochimica Acta, 134, 116-126. https://doi.org/10.1016/j.electacta.2014.04.136
Li, M., Zhou, S., Xu, Y., Liu, Z., Ma, F., Zhi, L., & Zhou, X., (2018a). Simultaneous Cr(VI) reduction and bioelectricity generation in a dual chamber microbial fuel cell. Chemical Engineering Journal, 334, 1621–1629. https://doi.org/10.1016/j.cej.2017.11.144
Li, X., Liu, G., Sun, S., Ma, F., Zhou, S., Lee, J. K., & Yao, H. (2018b). Power generation in dual chamber microbial fuel cells using dynamic membranes as separators. Energy Conversion and Management, 165, 488-494. https://doi.org/10.1016/j.enconman.2018.03.074
Liu, J., Liu, J., He, W., Qu, Y., Ren, N., & Feng, Y. (2014). Enhanced electricity generation for microbial fuel cell by using electrochemical oxidation to modify carbon cloth anode. Journal of Power Sources, 265, 391-396. https://doi.org/10.1016/j.jpowsour.2014.04.005
Liu, L., & Choi, S. (2017). Self-sustaining, solar-driven bioelectricity generation in micro-sized microbial fuel cell using co-culture of heterotrophic and photosynthetic bacteria. Journal of Power Sources, 348, 138-144. https://doi.org/10.1016/j.jpowsour.2017.03.014
Logroño, W., Ramírez, G., Recalde, C., Echeverría, M., & Cunachi, A. (2015). Bioelectricity generation from vegetables and fruits wastes by using single chamber microbial fuel cells with high Andean soils. Energy Procedia, 75, 2009-2014. https://doi.org/10.1016/j.egypro.2015.07.259
López, I. G. (2020). Desarrollo sostenible. Madrid, España: Editorial Elearning, SL.
Maity, J. P., Hou, C. P., Majumder, D., Bundschuh, J, Kulp, T. R., Chen, C. Y., … Chien-Cheng, C. (2014). The production of biofuel and bioelectricity associated with wastewater treatment by green algae. Energy, 78. 94–103. https://doi.org/10.1016/j.energy.2014.06.023
Martinez, C. M., & Alvarez, L. H. (2018). Application of redox mediators in bioelectrochemical systems. Biotechnology Advances, 36(5), 1412-1423.
https://doi.org/10.1016/j.biotechadv.2018.05.005
Me, M. H., & Bakar, M. A. (2020). Tubular ceramic performance as separator for microbial fuel cell: A review. International Journal of Hydrogen Energy, 45(42), 22340-22348. https://doi.org/10.1016/j.ijhydene.2019.08.115
Mohan, S. V., Sravan, J. S., Butti, S. K., Krishna, K. V., Modestra, J. A., Velvizhi, G., ... & Pandey, A. (2019). Microbial electrochemical technology: emerging and sustainable platform. In S. Venkata Mohan, S. Varjani, & A. Pandey (Eds.) Microbial Electrochemical Technology: Sustainable platform for Fuels, Chemicals and Remediation (pp. 3-18). https://doi.org/10.1016/B978-0-444-64052-9.00001-7
Munoz-Cupa, C., Hu, Y., Xu, C. C., & Bassi, A. (2021). An overview of microbial fuel cell usage in wastewater treatment, resource recovery and energy production. Science of the Total Environment, 754, 142429. https://doi.org/10.1016/j.scitotenv.2020.142429
Nitisoravut, R., & Regmi, R. (2017). Plant microbial fuel cells: A promising biosystems engineering. Renewable and Sustainable Energy Reviews, 76, 81-89. https://doi.org/10.1016/j.rser.2017.03.064
Obileke, K., Onyeaka, H., Meyer, E. L., & Nwokolo, N. (2021). Microbial fuel cells, a renewable energy technology for bio-electricity generation: A mini-review. Electrochemistry Communications, 125, 107003. https://doi.org/10.1016/j.elecom.2021.107003
Koffi, N., J., & Okabe, S. (2020). Domestic wastewater treatment and energy harvesting by serpentine up-flow MFCs equipped with PVDF-based activated carbon air-cathodes and a low voltage booster. Chemical Engineering Journal, 380, 122443. https://doi.org/10.1016/j.cej.2019.122443
Pirbadian, S., Barchinger, S. E., Leung, K. M., Byun, H. S., Jangir, Y., Bouhenni, … Gorby, Y. A. (2014). Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components. Proceedings of the National Academy of Sciences of the United States of America, 111(35):12883–12888. https://doi.org/10.1073/pnas.1410551111
Qiao, Y., Wu, X. S., Ma, C. X., He, H., & Li, C. M. (2014). A hierarchical porous graphene/nickel anode that simultaneously boosts the bio-and electro-catalysis for high-performance microbial fuel cells. RSC Advances, 4, 21788-21793. https://doi.org/10.1039/C4RA03082F
Rahimnejad, M., Asghary, M., & Fallah, M. (2020). Microbial fuel cell (MFC): An innovative technology for wastewater treatment and power generation. In R. N. Bharaga & G. Saxena (Eds) Bioremediation of Industrial Waste for Environmental Safety, Volume II: Biological Agents and Methods for Industrial Waste Management (pp. 215-235). https://doi.org/10.1007/978-981-13-3426-9_9
Repuello, B. C., Ticllausaca, A. A., & Román, F. T. (2020). Generating of electricity and municipal wastewater treatment using microbial fuel cells (MFC) in the city of Huancavelica. South Sustainability, 1(2), e018-e018. https://doi.org/10.21142/SS-0102-2020-018
Rosenbaum, M., He, Z., & Angenent, L. T. (2010). Light energy to bioelectricity: photosynthetic microbial fuel cells. Current Opinion in Biotechnology, 21(3), 259-264. https://doi.org/10.1016/j.copbio.2010.03.010.
Seow, T. W., Lim, C. K., Nor, M. H. M., Mubarak, M. F. M., Lam, C. Y., Yahya, A., & Ibrahim, Z. (2016). Review on wastewater treatment technologies. Int. J. Appl. Environ. Sci., 11(1), 111-126. Recuperado de http://www.ripublication.com/ijaes16/ijaesv11n1_08.pdf
Sheikh, R., Karmaker, S., Solayman, M., & Mayna, J. (2018). Bioelectricity from anaerobic co-digestion of organic solid wastes and sewage sludge using microbial fuel cells (MFCs). Journal of Sustainable Bioenergy Systems, 8(3), 95-106. https://doi.org/10.4236/jsbs.2018.83007
Sonawane, J. M., Ezugwu, C. I., & Ghosh, P. C. (2020). Microbial fuel cell-based biological oxygen demand sensors for monitoring wastewater: state-of-the-art and practical applications. ACS Sensors, 5(8), 2297-2316. https://doi.org/10.1021/acssensors.0c01299
Sun, H., Zhang, Y., Wu, S., Dong, R., & Angelidaki, I. (2019). Innovative operation of microbial fuel cell-based biosensor for selective monitoring of acetate during anaerobic digestion. Science of The Total Environment, 655, 1439-1447. https://doi.org/10.1016/j.scitotenv.2018.11.336
Tamirat, A. G., Guan, X., Liu, J., Luo, J., & Xia, Y. (2020). Redox mediators as charge agents for changing electrochemical reactions. Chemical Society Reviews, (20), https://doi.org/10.1039/D0CS00489H
Tharali, A. D., Sain, N., & Osborne, W. J. (2016). Microbial fuel cells in bioelectricity production. Frontiers in Life Science, 9(4), 252-266. https://doi.org/10.1080/21553769.2016.1230787.
Wang, H., Song, H., Yu, R., Cao, X., Fang, Z., & Li, X. (2016). New process for copper migration by bioelectricity generation in soil microbial fuel cells. Environmental Science and Pollution Research, 23, 13147-13154. https://doi.org/10.1007/s11356-016-6477-8
Wu, X. Y., Tong, F., Song, T. S., Gao, X. Y., Xie, J. J., Zhou, C. C., ... Wei, P. (2015). Effect of zeolite‐coated anode on the performance of microbial fuel cells. Journal of Chemical Technology & Biotechnology, 90(1), 87-92. https://doi.org/10.1002/jctb.4290
Yang, X., & Chen, S. (2021). Microorganisms in sediment microbial fuel cells: Ecological niche, microbial response, and environmental function. Science of The Total Environment, 756. 144145. https://doi.org/10.1016/j.scitotenv.2020.144145
Yaqoob, A. A., Ibrahim, M. N. M., & Rodríguez-Couto, S. (2020). Development and modificatin of materials to build cost-effective anodes for microbial fuel cells (MFCs): An overview. Biochemical Engineering Journal, 164, 07779. https://doi.org/10.1016/j.bej.2020.107779
Zhang P, Li K, Liu X., (2014). Carnation-like MnO2 modified activated carbon air cathode improve power generation in microbial fuel cells. Journal of Power Sources, 264, 248–253. https://doi.org/10.1016/j.jpowsour.2014.04.098
Zhang, Y., Liu, L., Van der Bruggen, B., & Yang, F. (2017). Nanocarbon based composite electrodes and their application in microbial fuel cells. Journal of Materials Chemistry A, 5(25), 12673-12698. https://doi.org/10.1039/C7TA01511A.
Zhang, Y., Liu, M., Zhou, M., Yang, H., Liang, L., & Gu, T. (2019). Microbial fuel cell hybrid systems for wastewater treatment and bioenergy production: Synergistic effects, mechanisms and challenges. Renewable and Sustainable Energy Reviews, 103, 13-29. https://doi.org/10.1016/j.rser.2018.12.027.
Zhao, C. E., Gai, P., Song, R., Zhang, J., & Zhu, J. J. (2015). Graphene/Au composites as an anode modifier for improving electricity generation in Shewanella-inoculated microbial fuel cells. Analytical Methods, 7, 4640-4644. https://doi.org/10.1039/C5AY00976F