El complejo de Vaska y la química organometálica

Palabras clave: Complejo de Vaska, organoiridio, química organometálica, catalizadores

Resumen

En 1961, Lauri Vaska y John W. DiLuzio publicaban un importante trabajo en el área de los complejos organoiridio, la síntesis y caracterización del trans-clorocarbonilbis(trifenilfosfina-κP)iridio(I), trans-[IrCl(CO)(PPh3)2], un compuesto que presentó actividad en la reacción de hidrogenación catalítica de olefinas y acetilenos. Este compuesto, conocido como “complejo de Vaska”, ha venido ofreciendo importantes oportunidades en química organometálica y en química orgánica, debido a sus aplicaciones en reacciones catalíticas que permiten transformar grupos funcionales, punto de partida de la síntesis de nuevas sustancias de interés farmacéutico, tecnológico e industrial. Una revisión desarrollada sobre la literatura científica confirma la importancia del complejo de Vaska en varias reacciones de la catálisis homogénea, bifásica y asimétrica. Adicionalmente, la posibilidad de incorporar nuevos ligandos, genera una serie de novedosos complejos análogos del tipo trans-[MCl(CO)L2] (M = Ir(I) o Rh(I), L = ligandos organofosforados complejos), que tienen aplicaciones en la ciencia de los materiales, la nanoquímica y, especialmente, en aplicaciones dirigidas a la biomedicina. A sesenta años del descubrimiento del trans-[IrCl(CO)(PPh3)2], quedan muchas posibilidades por explorar, y aún se generan expectativas en investigación y desarrollo de compuestos organoiridio. 

Descargas

La descarga de datos todavía no está disponible.

Citas

Absi-Halabi, M., Atwood, J.D., Forbus, N.P., & Brown, T.L. (1980). The mechanism of substitution of dicobalt octacarbonyl. Journal of the American Chemical Society, 102(20), 6248-6254.

Ahluwalia, V.K & Chopra, M (2008). Medicinal chemistry. New Delhi, India: CRC.

Antiñolo, A., Fonseca, I., Ortiz, A., Rosales, M., Sanz-Aparicio, J., Terreros, P., & Torrens, H. (1999). Iridium-fluorobenzenethiolato complexes: crystal structures of [Ir(SC6F5)(CO)(PPh3)2], [Ir3(μ-SC6F5)3(μ-CO)(CO)4(PPh3)2] and [Ir(SC6F5)(η-O2)(CO)(PPh3)2]. Polyhedron, 18(7), 959-968.

Aranguren, J.N., Contreras, R.R. (2010). Química Bioorganometálica en perspectiva. Revista de la Facultad de Farmacia, 52 (2), 22-33.

Balch, A.L., Costa, D.A., Lee, J.W., Noll, B.C., & Olmstead, M. M. (1994). Directing Effects in a Fullerene Epoxide Addition. Formation and Structural Characterization of (η2-C60O)Ir(CO)Cl(P(C6H5)3)2. Inorganic Chemistry, 33(10), 2071-2072.

Balch, A.L., Costa, D.A., Noll, B.C., & Olmstead, M.M. (1996). Developing Reagents To Orient Fullerene Derivatives. Formation and Structural Characterization of (η2-C60O)Ir(CO)Cl(As(C6H5)3)2. Inorganic Chemistry, 35(2), 458-462.

Bandini, A.L., Banditelli, G., Bonati, F., Minghetti, G., Demartin, F., & Manassero, M. (1984). A Series of monohapto pyrazolates of iridium(I) and iridium(III). Journal of Organometallic Chemistry, 269(1), 91-105.

Banerjee, S., & Wong, S.S. (2002). Functionalization of Carbon Nanotubes with a Metal-Containing Molecular Complex. Nano Letters, 2(1), 49-53.

Beattie, J.K., Masters, A.F., & Meyer, J.T. (1995). Nickel carbonyl cluster complexes. Polyhedron, 14(7), 829-868.

Beller, M., & Blaser, H.U. (2012). Organometallics as catalysts in the fine chemical industry. Heidelberg. Germany: Springer.

Bellucco, U., Croatto, U., Uguagliati, P., & Pietropaolo, R. (1967). Electrophilic attack upon trans-Bis(triethylphosphine)diphenylplatinum. Inorganic Chemistry, 6(4), 718-721.

Böttcher, H.-C., Graf, M., & Merzweiler, K. (1997). Iridium complexes with secondary phosphines: synthesis and X-ray crystal structure of [IrCl(Bu2tPH)3]. Polyhedron, 16(2), 341-343

Brady, R., De Camp, W.H., Flynn, B.R., Schneider, M.L., Scott, J.D., Vaska, L., & Werneke, M.F. (1975). Steric effects inhibiting reactivity. Crystal and molecular structure, spectra, and chemistry of trans-chlorocarbonylbis(tri-o-tolylphosphine)iridium(I), and related complexes. Inorganic Chemistry, 14(11), 2669-2675.

Böttcher, H.-C., Graf, M., & Merzweiler, K. (1996). Synthesis and X-ray crystal structures of phosphido-bridge heterobimetallic complexes: [FeIr(μ-CO)(CO)4(μ-PtBu2)(tBu2PH)] and [CoIr(CO)5(μ-H)(μ-PtBu2)(tBu2PH)]. Journal of Organometallic Chemistry, 525(1-2), 191-197.

Burk, M. J., McGrath, M. P., Wheeler, R., & Crabtree, R. H. (1988). The origin of the directing effect in hydrogen addition to square-planar d8 complexes. Journal of the American Chemical Society, 110(15), 5034-5039.

Calderazzo, F. Carbonyl Complexes of the Transition Metals. In: King, BK (Ed.). (2005). Encyclopedia of Inorganic Chemistry. New York: Wiley.

Churchill, R.M., Fettinger, J.C., Buttrey, L.A., Barkan, M. D., & Thompson, J.S. (1988). An accurate X-ray diffraction study of Vaska’s compound, trans-IrCl(CO)(PPh3)2, including resolution of the carbonyl/chloride disorder problem. Journal of Organometallic Chemistry, 340(2), 257-266.

Collman, J.P., & Kang, J.W. (1967). Acetylene Complexes of Iridium and Rhodium. Journal of the American Chemical Society, 89(4), 844-851.

Contreras RR. (2020). Catálisis homogénea con metales de transición. Transformando el mundo de la química. Parte 1. Mérida: Universidad de Los Andes.

Contreras, RR., Urbina-Gutiérrez, J.A., & Rodríguez-Sulbarán, P.J. (2020). El catalizador de Crabtree. Una breve revisión. Revista Ciencia e Ingeniería, 41(1): 3-14.

Contreras, R.R., Urbina-Gutiérrez, J.A., Aranguren, J.N. (2018). Compuestos Organometálicos y su potencial terapéutico en el tratamiento del cáncer. Una breve revision. Revista NOVASINERGIA, 2018, 1, 14-22.

Contreras, R.R., Cardozo E., & García-Molina, L.O.J. (2017). Transformando la catálisis homogénea: cincuenta años del catalizador de Wilkinson. Avances en Química, 12(2-3): 61-67.

Contreras RR., & Cardozo, E. (2015). Conceptos de nanoquímica. Capítulo 1, 1-28. En: Nanotecnología: Fundamentos y Aplicaciones, C Lárez-Velásquez, S Koteich-Khatib, F López-González (Editores). Mérida: Avances en Química / Departamento de Química - ULA.

Contreras, RR. (2014). Materiales híbridos. Una aproximación a la química de compuestos organometálicos. Mérida: Ediciones del CDCHTA-ULA.

Contreras, R.R., Aranguren, J.N., Bellandi, F., Gutiérrez, A. (2012). Una nueva generación de fármacos a base de compuestos organometálicos. CIENCIA, 20(Número Especial), 15-24.

Crabtree, R.H. (2019). The organometallic chemistry of the transition metals (Seventh edition). Hoboken: New Jersey: Wiley.

Cotton, F.A., & Troup, J.M. (1974). Reactivity of diiron nonacarbonyl in tetrahydrofuran. I. Isolation and characterization of pyridinetetracarbonyliron and pyrazinetetracarbonyliron. Journal of the American Chemical Society, 96(11), 3438-3443.

Cotton, F.A., Wilkinson G., Murillo C.A., & Bochmann, M. (1999). Advanced Inorganic Chemistry, Sixth Edition. John Wiley & Sons, Inc: New York.

Cotton, S. (2006). Lanthanide and actinide chemistry. Chichester: John Wiley.

Coville, N.J., Stolzenberg, A.M., & Muetterties, E.L. (1983). Mechanism of ligand substitution in dimanganese decacarbonyl. Journal of the American Chemical Society, 105(8), 2499-2500.

Dean, W.K. (1980). Reactions of Thiocarbamoyl compounds with vaska complexes: mechanism and stereochemistry. Journal of Organometallic Chemistry, 190(4), 353-361.

Dickson, R.S (1985). Homogenous catalysis with compounds of rhodium and iridium catalysis by metal complexes. Dordrecht, The Netherlands: Kluwer Academic

Domínguez Esquivel, J. M (coordinador editorial). (2004). El amanecer de la Catálisis en Iberoamérica. México: Instituto Mexicano de Petróleo y CYTED.

Dunbar, K.R., & Haefner, S.C. (1992). Crystallographic disorder in the orthorhombic form of carbonyl(chlorobis(triphenylphosphine)rhodium: relevance to the reported structure of the paramagnetic impurity in Wilkinson’s catalyst. Inorganic Chemistry, 31(17), 3676-3679.

Dunbar, K.R., Haefner, S.C., Uzelmeier, C.E., & Howard, A. (1995). Chemistry of tris(2,4,6-trimethoxyphenyl)phosphine with rhodium(I) and iridium(I) olefin complexes. Inorganica Chimica Acta, 240(1-2), 527-534.

Dyson, P., & McIndoe, J.S. (2000). Transition metal carbonyl cluster chemistry. Amsterdam, the Netherlands: Gordon and Breach Science Publishers.

Eisenberg, R. (1991). Parahydrogen-induced polarization: a new spin on reactions with molecular hydrogen. Accounts of Chemical Research, 24(4), 110-116.

Ellis, J.E. (2003). Metal Carbonyl Anions: from [Fe(CO)4]2-to [Hf(CO)6]2- and Beyond†. Organometallics, 22(17), 3322-3338.

Franciò, G., Scopelliti, R., Arena, C. G., Bruno, G., Drommi, D., & Faraone, F. (1998). IrPd, IrHg, IrCu, and IrTl Binuclear Complexes Bridged by the Short-Bite Ligand 2-(Diphenylphosphino)pyridine. Catalytic Effect in the Hydroformylation of Styrene Due to the Monodentate P-Bonded 2-(Diphenylphosphino)pyridine Ligands oftrans-[Ir(CO)(Ph2PPy)2Cl]. Organometallics, 17(3), 338-347.

Feuer, H. (2008). Nitrile Oxides, Nitrones, and Nitronates in Organic Synthesis: Novel Strategies in Synthesis. Hoboken, NJ: John Wiley & Sons.

Fochi, G. (1999). Il segretto della chimica. Milán: Longanesi & C.

Gabriel, P., Gregory, A.W., & Dixon, D.J. (2019). Iridium-Catalyzed Aza-Spirocyclization of Indole-Tethered Amides: An Interrupted Pictet–Spengler Reaction. Organic Letters. 21, 17, 6658-6662

Gal, A.W., Ambrosius, H.P.M.M., van der Ploeg, A.F.M.J., & Bosman, W.P. (1978). Bidentate, monodentate and bridging thiocarboxamido complexes of rhodium and iridium; the x-ray structure determination of [Ir(η2-SCNMe2)2(CO)(PPh3)]+ BF4-. Journal of Organometallic Chemistry, 149(1), 81-96.

Gansäuer, A., Otte, M., & Shi, L. (2011). Radical Cyclizations Terminated by Ir-Catalyzed Hydrogen Atom Transfer. Journal of the American Chemical Society, 133(3), 416-417.

Grobbelaar, E., Lötter, S., Visser, H. G., Conradie, J., & Purcell, W. (2009). Investigation of the electron density of iridium(I) Vaska-type complexes using DFT calculations and structural results: Structure of trans-carbonyl-chloro-bis(tricyclohexylphosphine)-iridium(I). Inorganica Chimica Acta, 362(11), 3949-3954.

Haque, N., Neumann, B., Roedel, J. N., & Lorenz, I.-P. (2010). Synthesis, structures, and characterization of benzildiimine complexes of rhodium(III) and iridium(I). Inorganica Chimica Acta, 363(4), 723-728.

Harvey, J. (2018). Computational chemistry. Oxford, United Kingdom: Oxford University Press.

Haynes, A. (2007). Commercial Applications of Iridium Complexes in Homogeneous Catalysis. Comprehensive Organometallic Chemistry III, 427-444.

Hill, A.M., Levason, W., Preece, S.R., & Frampton, C.S. (1997). Rhodium(III) and iridium(III) complexes of the tetraarsine tris(o-dimethylarsinophenyl)arsine. Crystal structure of [Ir{(o-Me2AsC6H4)3As}(CO)Cl][BF4]2. Inorganica Chimica Acta, 254(1), 99-104.

Igartúa-Nieves, E., Rivera-Pagán, J. A., & Cortés-Figueroa, J. E. (2012). Electrochemical detection of C60-4 and C60- 5 species coordinated to Vaska’s catalyst. Inorganic Chemistry Communications, 24(2012), 4-6.

Jacobsen, E.N. (2011). Comprehensive asymmetric catalysis. Berlin: Springer.

James, B.R., & Memon, N.A. (1968). Kinetic study of iridium(I) complexes as homogeneous hydrogenation catalysts. Canadian Journal of Chemistry, 46(2), 217-223.

Janik, T.S., Bernard, K.A., Churchill, M.R., & Atwood, J.D. (1987). Reaction of alkenes with trans-MeOIr(CO)(PPh3)2. Crystal and molecular structure of the pentacoordinate alkoxy-alkene iridium(I) complex, MeOIr(CO)(PPh3)2(TCNE). Journal of Organometallic Chemistry, 323(2), 247-259.

Kirchmann, M., Fleischhauer, S., & Wesemann, L. (2008). Iridium Coordination Compounds of Stanna-closo-dodecaborate. Organometallics, 27(12), 2803-2808.

Kirss, R.U. (2013). Fifty years of Vaska’s compound. Bulletin for the History of Chemistry, 38(1), 52-60.

Kovács, J., Todd, T.D., Reibenspies, J.H., & Darensbourg, D.J. (2000). Water-Soluble Organometallic Compounds. 9.1. Catalytic Hydrogenation and Selective Isomerization of Olefins by Water-Soluble Analogues of Vaska’s Complex. Organometallics, 19(19), 3963-3969.

Lebel, H., & Ladjel, C. (2008). Iridium Complexes in Olefination Reactions. Organometallics, 27(11), 2676-2678.

Lebel, H., Ladjel, C., Bélanger-Gariépy, F., & Schaper, F. (2008). Redetermination of the O–O bond length in the dioxygen-adduct of Vaska’s complex. Journal of Organometallic Chemistry, 693(16), 2645–2648.

Liu, Z., & Sadler, P. J. (2014). Organoiridium Complexes: Anticancer Agents and Catalysts. Accounts of Chemical Research, 47(4), 1174-1185.

Matthes, J., Gründemann, S., Buntkowsky, G., Chaudret, B., & Limbach, H.H. (2013). NMR Studies of the Reaction Path of the o-H2/p-H2 Spin Conversion Catalyzed by Vaska’s Complex in the Solid State. Applied Magnetic Resonance, 44(1-2), 247-265.

Margarita, C., & Andersson, P.G. (2017). Evolution and Prospects of the Asymmetric Hydrogenation of Unfunctionalized Olefins. Journal of the American Chemical Society, 139(4), 1346-1356.

Mercuri, F., & Sgamellotti, A. (2006). Functionalization of carbon nanotubes with Vaska’s complex: A theoretical approach. Journal of Physical Chemistry B, 110(31), 15291-15294.


Mitchell, P.R., & Parish, R.V. (1969). The eighteen electron rule. Journal of Chemical Education, 46(12), 811.

Moers, F.G., De Jong, J.A.M., & Beaumont, P.M.H. (1973). Tricyclohexylphosphine complexes of rhodium(I), rhodium(II), iridium(I) and iridium(III). Journal of Inorganic and Nuclear Chemistry, 35(6), 1915-1920.

Montgomery, C.D. (2007). [Pi] π-Backbonding in Carbonyl Complexes and Carbon–Oxygen Stretching Frequencies: A Molecular Modeling Exercise. Journal of Chemical Education, 84(1), 102-105.

Muller, A., & Otto, S. (2011). trans-Carbonylchloridobis(ferrocenyldiphenylphosphane-κP)rhodium(I) dichloromethane monosolvate andtrans-carbonylchloridobis(ferrocenyldiphenylphosphane-κP)iridium(I) dichloromethane monosolvate. Acta Crystallographica Section C Crystal Structure Communications, 67(5), m165-m168.

Müller, T.E., Mingos, D.M.P., 1995, Determination of the Tolman cone angle from crystallographic parameters and a statistical analysis using the crystallographic data base. Transition Metal Chemistry, 20(6), 533-539.

Nakamoto, K. (2009). Infrared and Raman spectra of inorganic and coordination compounds (6th ed). Chichester: John Wiley.

Pearson, R.G. (1997). Chemical hardness. Weinheim, Germany: Wiley-VCH.

Parshall G.W. (1992) Homogeneous catalysis: the applications and chemistry of catalysis by soluble transition metal complexes (2nd ed). New York: Wiley.

Pelczar, E.M., Munro-Leighton, C., & Gagné, M.R. (2009). Oxidative Addition of Glycosylbromides totrans-Ir(PMe3)2(CO)Cl. Organometallics, 28(3), 663-665.

Restivo, R.J., Ferguson, G., Kelly, T.L., & Senoff, C.V. (1975). Metal-olefin complexes: Synthesis and molecular structure of trans-chloro(ethylene)bis(triphenylphosphine)iridium(I), IrCI(C2H4)(PPh3)2. Journal of Organometallic Chemistry, 90(1), 101–109.

Roodt, A., Otto, S., & Steyl, G. (2003). Structure and solution behaviour of rhodium(I) Vaska-type complexes for correlation of steric and electronic properties of tertiary phosphine ligands. Coordination Chemistry Reviews, 245(1-2), 121-137.

Rowlands, G.J. (2010). Radicals in organic synthesis: part 2. Tetrahedron, 66(9), 1593-1636.

Sánchez-Sánchez, K., Castillo-García, A. A., Cervantes-Vásquez, M., Ortiz-Pastrana, N., & Paz-Sandoval, M. A. (2019). Butadienesulfonyl iridium complexes with phosphine and carbonyl ligands. Journal of Organometallic Chemistry, 900, 120929.


Schliwa, M. (2003). Molecular Motors. Weinheim: Wiley-VCH GmbH & Co. KGaA.

Schmid, G., Waser, R. & Krug, H. (2012). Nanotechnology. Weinheim, Germany: Wiley-VCH.

Serp, P., Hernández, M., & Kalck, P. (1999). Dimethylformamide as a convenient CO source for the facile preparation of rhodium-, iridium- or ruthenium-chlorocarbonyl complexes directly from RhCl3·3H2O, IrCl3·3H2O or RuCl3·3H2O. Comptes Rendus de l’Académie Des Sciences - Series IIC - Chemistry, 2(5-6), 267-272.

Sharma, R.K. (2020). Silica-based organic-inorganic hybrid nanomaterials: synthesis, functionalization and applications in the field of catalysis. London: World Scientific Publishing.

Shibata, T., Yamashita, K., Ishida, H., & Takagi, K. (2001). Iridium Complex Catalyzed Carbonylative Alkyne−Alkyne Coupling for the Synthesis of Cyclopentadienones. Organic Letters, 3(8), 1217-1219.


Skancke, A., & Liebman, J. F. (1994). Carbonyl Compounds of Boron and Their Isomers. The Journal of Physical Chemistry, 98(50), 13215–13220.

Tahara, A., Miyamoto, Y., Aoto, R., Shigeta, K., Une, Y., Sunada, Y., Motoyama, Y., & Nagashima, H. (2015). Catalyst Design of Vaska-Type Iridium Complexes for Highly Efficient Synthesis of π-Conjugated Enamines. Organometallics, 34(20), 4895-4907.

Tanaka, K., & Kinbara, K. (2008). Toward autonomously operating molecular machines driven by transition-metal catalyst. Molecular BioSystems, 4(6), 512-514.

Tanaka, M., & Sakakura, T. (1992). Functionalization of Hydrocarbons by Homogeneous Catalysis. Homogeneous Transition Metal Catalyzed Reactions, 181-196.

Taylor, K. A. (1974). Chelate Complexes of Iridium. Homogeneous Catalysis, 195–206.

Une, Y., Tahara, A., Miyamoto, Y., Sunada, Y., Nagashima, H. (2019). Iridium-PPh3 Catalysts for Conversion of Amides to Enamines. Organometallics, 38(4), 852-862.

Vaska, L., & DiLuzio J.W. (1961). Carbonyl and Hydrido-Carbonyl Complexes of Iridium by Reaction with Alcohols Hydrido Complexes by Reaction with Acid. Journal of the American Chemical Society, 83, 2784-2785.

Vaska, L. (1961). Hydrido complexes of iridium. Journal of the American Chemical Society, 83(3), 756-756.

Vaska, L. (1965). Homogeneous catalysis by five- and six-coordinated metal hydride complexes (1,2). Inorganic and Nuclear Chemistry Letters, 1(2), 89-95.

Voet, D., & Voet, Judith, G. (2011). Biochemistry (4th ed). Hoboken, N.J: Wiley.

Vrieze, K., Collman, J.P., Sears, C.T., Kubota, M., Davison, A., & Shawl, E.T. (2007). trans-Chlorocarbonylbis(Tri-Phenylphosphine)Iridium. Inorganic Syntheses, 101-104.

Wang, J. (2013). Nanomachines: fundamentals and applications. Weinheim: Wiley-VCH.

Weininger, M. S., Griffith, E. A. H., Sears, C. T., & Amma, E. L. (1982). The preparation and crystal structure of the dioxygen adduct of bis(diphenylethylphosphine)chlorocarbonyl iridium(I). Inorganica Chimica Acta, 60, 67-71.

Wender, I., & Pino, P. (1968). Organic syntheses via metal carbonyls. New York: Interscience Publishers.

Yves, J. (2005). Molecular orbitals of transition metal complexes. Oxford, UK: Oxford University Press.

Zahalka, H.A., Alper, H., & Sasson, Y. (1986). Homogeneous decarbonylation of formate esters catalyzed by Vaska’s compound. Organometallics, 5(12), 2497–2499.
Publicado
2020-06-01
Cómo citar
Contreras, R. R., Cardozo, E., & Fontal, B. (2020). El complejo de Vaska y la química organometálica. NOVASINERGIA, ISSN 2631-2654, 3(1), 96-110. https://doi.org/10.37135/ns.01.05.10
Sección
Artículos de Investigación y Artículos de Revisión

Artículos más leídos del mismo autor/a