Efectos Isotópicos del Agua Ligera (H2O) y del Agua Pesada (D2O) en las Interacciones Hidrofóbicas

  • Navinkumar J. Patil Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology (KAUST)
  • Paola Gabriela Vinueza Naranjo Sapienza Università di Roma, Roma
Palabras clave: Agua Pesada (D2O), Interacciones Hidrófobas, Efectos de Isótopos, Agua Ligera (H2O), Aparatos de Fuerzas de Superficie (SFA)


Las propiedades fisicoquímicas del agua ligera (H2O) y del agua pesada (D2O) difieren en cierta medida debido a las diferencias que surgen de los efectos de los isótopos. Para comprender mejor los efectos de los isótopos en las interacciones hidrófobas, informamos la comparación experimental directa de las interacciones hidrófobas en agua ligera versus agua pesada entre superficies de mica hidrofobizadas molecularmente extendidas y lisas utilizando un Aparato de Fuerzas de Superficie (SFA). En este estudio sintetizamos superficies hidrófobas estables, lisas y fácilmente reproducibles mediante la deposición de monocapas de perfluorodeciltriclorosilano (FDTS) sobre superficies de mica activadas por plasma utilizando la técnica de deposición de vapor molecular (MVD). La humectabilidad y la morfología de la superficie de las muestras de mica recubiertas con FDTS se controlaron directamente utilizando una célula de ángulo de contacto y un microscopio de fuerza atómica (AFM). La inestabilidad en la curva de fuerza se observa durante el acercamiento y la retracción de las superficies en los experimentos SFA y nuestros experimentos preliminares de espectroscopia de fuerza demostraron que la magnitud de la interacción hidrofóbica entre las superficies de mica recubiertas con FDTS es 20% más fuerte en agua pesada que en agua ligera. Nuestros resultados indican que los perfiles de fuerza-distancia obtenidos para los casos tanto de H2O como de D2O no pudieron ser descritos razonablemente por la teoría clásica de Derjaguin − Landau − Verwey − Overbeek (DLVO) y la fuerte adhesión medida entre las capas FDTS-FDTS que interactúan es dominado por las interacciones hidrófobas.


La descarga de datos todavía no está disponible.


- Algara-Siller, G., Lehtinen, O., Wang, F. C., Nair, R. R., Kaiser, U.,Wu, H. A., Geim, A. K. & Grigorieva, I. V. (2015). Square ice in graphene nanocapillaries. Nature, 519(7544), 443-445.

- Barthlott, W. & Neinhuis, C. (1997). Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 202(1), 1-8.

- Breslow, R. (1991). Hydrophobic Effects on Simple Organic-Reactions in Water. Acc Chem Res, 24(6), 159-164.

- Ceriotti, M., Fang, W., Kusalik, P. G., McKenzie, R. H., Michaelides, A., Morales, M. A. & Markland, T. E. (2016). Nuclear Quantum Effects in Water and Aqueous Systems: Experiment, Theory, and Current Challenges. Chem Rev, 116(13), 7529-7550.

- Chandler, D. (2005). Interfaces and the driving force of hydrophobic assembly. Nature, 437(7059), 640-647.

- Claesson, P. M., Kjellander, R., Stenius, P. & Christenson, H. K. (1986). Direct measurement of temperature-dependent interactions between non-ionic surfactant layers. J Chem Soc Faraday Trans I,82, pp. 2735-2746. doi: 10.1039/F19868202735

- Craig, V.S.J. (2011). Very small bubbles at surfaces-the nanobubble puzzle. Soft Matter, 7(1), 40-48.

- De Marco, L., Carpenter, W., Liu, H. C., Biswas, R., Bowman, J. M. & Tokmakoff, A. (2016). Differences in the Vibrational Dynamics of H2O and D2O: Observation of Symmetric and Antisymmetric Stretching Vibrations in Heavy Water. J Phys Chem Lett, 7(10), 1769-1774.

- Defante, A.P., Burai, T. N., Becker, M. L. & Dhinojwala, A. (2015). Consequences of Water between Two Hydrophobic Surfaces on Adhesion and Wetting. Langmuir, 31(8), 2398-2406.

- Donaldson, S. H., Royne, A., Kristiansen, K., Rapp, M. V., Das, S., Gebbie, M. A., Lee, D. W., Stock, P., Valtiner, M. & Israelachvili, J. (2015). Developing General Interaction Potential for Hydrophobic and Hydrophilic Interactions. Langmuir, 31(7), 2051-2064. doi: 10.1021/la502115g

- Du, M., Zhao, Y., Tian, Y., Li, K. & Jiang, L. (2016). Electrospun Multiscale Structured Membrane for Efficient Water Collection and Directional Transport. Small, 12(8), 1000-1005.

- Efimova, Y. M., Haemers, S., Wierczinski, B., Norde, W. & van Well, A. A. (2007). Stability of globular proteins in H2O and D2O. Biopolymers, 85(3), 264-273.

- Eriksson, J. C. (1989). A phenomenological theory of long-range hydrophobic attraction forces based on a square-gradient variational approach. J Chem Soc, Faraday Trans 2, 85(3): 163-176.

- Gant, T. G. (2014). Using deuterium in drug discovery: leaving the label in the drug. J Med Chem, 57(9), 3595–3611.

- Hu, D. L., Chan, B. & Bush, J. W. M. (2003). The hydrodynamics of water strider locomotion. Nature, 424(6949), 663-666.

- Hummer, G., Garde, S., Garcia, A. E. & Pratt, L. R. (2000). New perspectives on hydrophobic effects. Chem Phys, 258(2-3), 349-370.

- Israelachvili, J. N. & Pashley, R. M. (1984). Measurement of the hydrophobic interaction between two hydrophobic surfaces in aqueous electrolyte solutions. J Colloid Interface Sci, 98(2), 500-514.

- Israelachvili, J. N. (2011). Intermolecular and Surface Forces: Revised Third Edition. Academic Press.

- Israelachvili, J. N. & Pashley, R. (1982). The hydrophobic interaction is long range, decaying exponentially with distance. Nature, 300(5890), 341-342.

- Israelachvili, J. N., Min, Y., Akbulut, M., Alig, A., Carver, G., Greene, W., Kristiansen, K., Meyer, E., Pesika, N., Rosenberg, K. & Zeng, H. (2010). Recent Advances in the Surface Forces Apparatus (SFA) Technique. Rep Prog Phys, 73, 036601.

- Jamadagni, S. N., Godawat, R. & Garde, S. (2011). Hydrophobicity of proteins and interfaces: insights from density fluctuations. Annu Rev Chem Biomol Eng, 2, 147.

- Kauzmann, W. (1959). Some Factors in the Interpretation of Protein Denaturation. Adv Protein Chem, 14, 1-63.

- Kidambi, P. R., Boutilier, M. S. H., Wang, L., Jang, D., Kim, J. & Karnik, R. (2017). Selective nanoscale mass transport across atomically thin single crystalline graphene membranes. Adv Mater, 29(19),1605896.

- Kokkoli, E. & Zukoski, C. F. (1999). Effect of Solvents on Interactions between Hydrophobic Self-Assembled Monolayers. J Colloid Interface Sci, 209(1), 60-65.

- Liu, K. S., Yao, X. & Jiang, L. (2010). Recent developments in bio-inspired special wettability. Chem Soc Rev, 39(8), 3240-3255.

- Ma, C.D., Wang, C., Acevedo-Velez, C., Gellman, S. H. & Abbott, N. L. (2015). Modulation of hydrophobic interactions by proximally immobilized ions. Nature, 517(7534), 347-U443.

- Makhatadze, G. I., Clore, G. M. & Gronenborn, A. M. (1995). Solvent Isotope Effect and Protein Stability. Nat Struct Biol, 2(10), 852-855.

- Marcus, Y. & Ben‐Naim, A. (1985). A study of the structure of water and its dependence on solutes, based on the isotope effects on solvation thermodynamics in water. J Chem Phys, 83(9), 4744-4759.

- McCarty, L. S. & Whitesides, G. M. (2008). Electrostatic charging due to separation of ions at interfaces: Contact electrification of ionic electrets. Angew Chem Int Edit, 47(12), 2188-2207. doi: 10.1002/anie.200701812.

- Mölbert, S. (2003). The Hydrophobic Interaction Modeling Hydrophobic Interactions and Aggregation of Non-Polar Particles in Aqueous Solutions. Doctoral Thesis. Retrieved from https://serval.unil.ch/resource/serval:BIB_R_494.P001/REF.pdf

- Morrone, J. A. & Car, R. (2008). Nuclear Quantum Effects in Water. Phys. Rev. Lett. 101(1), 017801.

- Oakenfull, D. and Fenwick, D. E. (1975). Hydrophobic Interaction in Deuterium-Oxide. Aust J Chem, 28(4), 715-720.

- Parker, A. R. & Lawrence, C. R. (2001). Water capture by a desert beetle. Nature, 414(6859), 33-34.

- Patel, A. J. & Garde, S. (2014). Efficient method to characterize the context-dependent hydrophobicity of proteins. J Phys Chem B, 118(6), 1564-1573.

- Rasaiah, J. C., Garde, S. & Hummer, G. (2008). Water in nonpolar confinement: From nanotubes to proteins and beyond. Annu Rev Phys Chem, 59, 713-740.

- Remsing, R. C., Xi, E., Vembanur, S., Sharma, S., Debenedetti, P. G., Garde, S. & Patel, A. J. (2015). Pathways to dewetting in hydrophobic confinement. P Natl Acad Sci USA, 112(27), 8181-8186.

- Røn, T., Javakhishvili, I., Patil, N. J., Jankova, K., Zappone, B., Hvilsted, S. & Lee, S. (2014). Aqueous lubricating properties of charged (ABC) and neutral (ABA) triblock copolymer chains. Polymer, 55(19), 4873-4883.

- Saykally, R. J. (2013). AIR/WATER INTERFACE Two sides of the acid-base story. Nat Chem, 5(2), 82-84. doi: 10.1038/nchem.1556

- Soper, A. K. & Benmore, C. J. (2008). Quantum Differences between Heavy and Light Water. Phys Rev Lett, 101, 065502.

- Strazdaite, S., Versluis, J., Backus, E. F. G and Bakker H. J. (2014). The enhanced ordering of water at hydrophobic surfaces. J Chem Phys, 140(5), 054711.

- Tabor, R. F., Grieser, F., Dagastine, R. R. & Chan, D. Y. C. (2014). The hydrophobic force: measurements and methods. Phys Chem Chem Phys, 16(34), 18065-18075.

- Tadmor, R., Chen, N. & Israelachvili, J. N. (2003), Thickness and refractive index measurements using multiple beam interference fringes (FECO). J Colloid Interface Sci, 264(2), 548-553.

- Tanford, C. (1978). Hydrophobic Effect and Organization of Living Matter. Science, 200(4345), 1012-1018.

- Thomas, L. L., Tirado-Rives, J. & Jorgensen, W. L. (2010). Quantum Mechanical/Molecular Mechanical Modeling Finds Diels-Alder Reactions Are Accelerated Less on the Surface of Water Than in Water. J Am Chem Soc, 132(9), 3097-3104. doi: 10.1021/ja909740y

- Verwey, E. J. W. & Overbeek, J. T. (1947). Theory of the Stability of Lyophobic Colloids. Elsevier: NewYork, 51(3), 631-636. doi: 10.1021/j150453a001

- Whitby, M., Cagnon, L., Thanou, M. & Quirke, N. (2008). Enhanced fluid flow through nanoscale carbon pipes. Nano Lett , 8(9), 2632-2637.

- Zappone, B., Patil, N. J., Lombardo, M. & Lombardo, G. (2018). Transient viscous response of the human cornea probed with the Surface Force Apparatus. PLoS One, 13(5), e0197779.