Inspección no destructiva de vacíos en MOSFET de Potencia

  • José Brito del Pino Facultad de Ingeniería, Universidad Nacional de Chimborazo
  • Felipe Brito del Pino Transmissions Department, Coorporación Nacional de Telecomunicaciones
  • Moshe Brito del Pino Facultad de Ingeniería, Universidad Nacional de Chimborazo
Palabras clave: MOSFET de potencia, Control de Calidad, Software, Tomografía, Vacíos


Los vacíos pueden afectar la función normal de los transistores de efecto de campo Metal-Oxide-Semiconductor (MOSFET) si son más del 25 % del área total, siendo esta una característica importante en el control de calidad de los vacíos en el proceso de fabricación. El método experimental se empleó utilizando la microscopía electrónica de barrido con espectroscopia de dispersión de energía (SEM-EDS) y la técnica de microtomografía. El método de microscopía electrónica de barrido con espectroscopia de dispersión de energía permitió la cuantificación de las características químicas y físicas de la capa de soldadura en cada dispositivo. El método de microtomografía se ha utilizado como método de inspección no destructiva (NDI) en los MOSFET de potencia para cuantificar los huecos. La metodología de investigación permitió la cuantificación de los vacíos con el objetivo de inspeccionar las imperfecciones de fabricación que influyen en el rendimiento del dispositivo. La programación orientada a objetos se desarrolló utilizando el software LabView que permite mejorar la detección de huecos desde una imagen con distorsión, cuantificar microvoides y macrovoides, la ubicación en la capa de soldadura utilizando el centro de masa de vaciado y su resultado estadístico. Los resultados del análisis de vacíos demostraron que la técnica y los métodos utilizados para este tipo de detección de defectos en Power MOSFET podrían representar una herramienta NDI adecuada para el control de calidad.


La descarga de datos todavía no está disponible.


- Bajenescu, T. & Bazu, M. (1999). Reliability of Electronic Components: A Practical Guide to Electronic System Manufacturing. New York: Springer-Verlag, 1 edition. DOI 10.1007/978-3-642-58505-0.

- Bušek, D., Dušek, K., Růžička, D., Plaček, M., Mach, P., Urbánek, J. & Starý, J. (2016). Flux effect on void quantity and size in soldered joints. Microelectronics Reliability, 60(Supplement C), 135–140.

- Chen, L., Paulasto-Krockel, M., Frohler, U., Schweitzer, D. & Pape, H. (2008). Thermal impact of randomly distributed solder voids on Rth-JC of MOSFETs,. 2008 2nd Electronics System-Integration Technology Conference.

- DirectFET-Technology (2017a). DirectFET Technology Inspection Application Note. Retrieved from

- DirectFET-Technology (2017b). Recommendations for Printed Circuit Board Assembly of Infineon SON Packages. Retrieved from

- Dusek, K., Vlach, J., Brejcha, M., Hájková, L., Pavel, Z. & Popísil, L. (2013). Influence of humidity on voids formation inside the solder joint. Advanced Science, Engineering and Medicine, 5(6), 543–547.

- Easton, J., Struk, P. & Rotella, A. (2008). Imaging and Analysis of Void-Defects in Solder Joints Formed in Reduced Gravity Using High-Resolution Computed Tomography,.46th AIAA Aerospace Sciences Meeting and Exhibit.

- Fladischer, K., Mitterhuber, L., Kraker, E., Ginter, D., Rosc, J. & Magnien, J. (2018). A Close Look on Voids in Solder Joints. 2018 24rd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC).

- GEInspection-Technologies (2017). Solder joint inspection and analysis. PCBA Brochure, Retrieved from

- Hanke, R., Fuchs, T. & Uhlmann, N. (2008). X-ray based methods for non-destructive testing and material characterization. Nuclear Instruments and Methods in Physics Research Section A, 591(1), 14–18.

- Holt, D. & Joy, D. (1989). SEM Microcharacterization of Semiconductors, volume 12. Academic Press Inc., San Diego, CA 92101, 1 edition. An optional note.

- Katsis, D. & Vanwyk, J. (2006). A thermal, mechanical, and electrical study of voiding in the solder die-attach of power mosfets. IEEE Transactions on Components and Packaging Technologies., 29(1), 127–136.

- Kim, Y. C., Kim, J., Choy, J. H., Park, J. C. & Choi, H. M. (1999). Effects of cobalt silicidation and postannealing on void defects at the sidewall spacer edge of metal–oxide–silicon field-effect transistors. Applied physics letters, 75(9), 1270–1272.

- Lang, D. (2017). AN-9037 - Assembly Guidelines for 8x8 MLP DriverMOS Packaging. Retrieved from

- Machin, K. & Webb, S. (1994). Cone-beam x-ray microtomography of small specimens. Physics in Medicine & Biology, 39(10), 1639.

- Manikam, V. R., Paing, S. & Ang, A. (2013). Effects of soft solder materials and die attach process parameters on large power semiconductor dies joint reliability. 2013 IEEE 15th Electronics Packaging Technology Conference (EPTC 2013).

- National-Instrument (2017). IMAQ Vision for LabVIEW. Worldwide Technical Support and Product Information, Retrieved from

- Pendleton, T., Hunter, L. & Lau, S. H. (2008). Noninvasive Failure Analysis of Passive Electronic Devices in Wireless Modules Using X-ray Microtomography (MicroCT). Conference Proceedings from the 34th International Symposium for Testing and Failure Analysis.

- Ruifen, Z., Tat, Y. K., Huei, Y. L. & Dexter, R. (2014). How to improve void performance in wafer bumping. 2014 IEEE 16th Electronics Packaging Technology Conference (EPTC).

- Saggio, M., Fagone, D. & Musumeci, S. (2000). MDmeshTM: innovative technology for high voltage Power MOSFETs. 12th International Symposium on Power Semiconductor Devices ICs. Proceedings (Cat. o.00CH37094).

- Said, A. F., Bennett, B. L., Karam, L. J. & Pettinato, J. (2010). Robust automatic void detection in solder balls,. 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.

- Saxena, S. & Kumar, M. (2012). Advances in Microelectronics and Photonics, chapter 1, pp. 1–23. Nova Science Publishers Inc.

- Sesek, A., Chambers, O. & Trontelj, J. (2019). Study on the die-attach voids distribution with x-ray and image processing techniques. ASME. J. Electron. Packag., 141(2), 1–7.

- STLife-Augmented (2017). N-channel 950 V, 0.275 W typ., 17.5 A MDmeshTM K5. Power MOSFETs in D2PAK, TO-220FP, TO-220 and TO-247, Retrieved from

- STMicroelectronics (2019). Rectifiers thermal management, handling and mounting recommendations. Retrieved from

- Tran, S., Dupont, L. & Khatir, Z. (2017a). Evaluation of multi-void and drain metallization thickness effects on the electro thermal behavior of si mosfet under forward bias conditions. 2017 19th European Conference on Power Electronics and Applications (EPE’17 ECCE Europe), pp. 1–10.

- Tran, S. H., Dupont, L. & Khatir, Z. (2017b). Electrothermal evaluation of single and multiple solder void effects on low-voltage si mosfet behavior in forward bias conditions. IEEE Transactions on Components, Packaging and Manufacturing Technology, 7(3), 396–404.

- Tulevski, G. S., Nuckolls, C., Afzali, A., Graham, T. O. & Kagan, C. R. (2006). Device scaling in sub-100 nm pentacene field-effect transistors. Applied physics letters, 89(183101).

- Turbell, H. (2017). Cone-Beam Reconstruction Using Filtered Backprojection. Retrieved from

- Vlassenbroeck, J., Dierick, M., Masschaele, B., Cnudde, V., Van Hoorebeke, L. & Jacobs, P. (2007). Software tools for quantification of x-ray microtomography at the ugct. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 580(1), 442 – 445.

- Wild, P., Gr¨ozinger, T., Lorenz, D. & Zimmermann, A. (2017). Void formation and their effect on reliability of lead-free solder joints on mid and pcb substrates. IEEE Transactions on Reliability, 66(4), 1229–1237.
Cómo citar
Brito del Pino, J., Brito del Pino, F., & Brito del Pino, M. (2019). Inspección no destructiva de vacíos en MOSFET de Potencia. NOVASINERGIA, ISSN 2631-2654, 2(1), 41-49.