Detección de Cd (II) y Pb (II) por voltamperometría de separación anódica utilizando electrodos de carbono vidriosos modificados con aleación bimetálica Ag-Hg y Ag-Bi
DOI:
https://doi.org/10.37135/unach.ns.001.04.08Palabras clave:
Aleación bimetálica, electrodos modificados, voltamperometría de redisolución anódica de Pb y CdResumen
Presentamos la evaluación de los electrodos de carbono vítreo (GC) modificados con películas de Nafion (Nf) y depósitos bimetálicos de aleaciones Ag-Hg y Ag-Bi. La mayoría de los bimetálicos depositados, con un tamaño promedio de aproximadamente 150 nm, se dispersaron e incrustaron uniformemente dentro de la red del Nafion. En contraste, una cantidad mucho menor permaneció encima de las incrustadas sin ninguna orientación regular, como lo indica imágenes de microscopía electrónica de barrido (SEM) y microscopía de fuerza atómica (AFM). Las pruebas de sensibilidad para el electrodo modificado AgBiNf/GC produjeron límites de detección (DL), basados en la variabilidad de una solución en blanco (criterio de 3 s), de 0,78 y 0,66 μg L-1 para Cd (II) y Pb (II), respectivamente; mientras que el DL sobre el electrodo modificado AgHgNf/GC fue 0,17 y 0,24 μg L-1 para Cd (II) y Pb (II), respectivamente. La precisión de la metodología por voltametría de redisolución anódica se verificó mediante el cálculo de porcentajes de recuperación de los dos analitos, expresados como error relativo. Se logró una recuperación del 99% al 92%.
Descargas
Referencias
Abkenar, S. D., Hosseini, M., Dahaghin, Z., Salavati-Niasari, M., & Jamali, M. R. (2010). Speciation of chromium in water samples with homogeneous liquid-liquid extraction and determination by flame atomic absorption spectrometry. Bulletin of the Korean Chemical Society, 31(10), 2813-2818.
Abkenar, S. D., Dahaghin, Z., Sadeghi, H. B., Hosseini, M., & Salavati-Niasari, M. (2011). Determination of zinc in water samples by flame atomic absorption spectrometry after homogeneous liquid-liquid extraction, Journal of Analytical Chemistry, 66(6), 612-617. https://doi.org/10.1134/S1061934811060062
Bagheri, A., Behbahani, M., Amini, M. M., Sadeghi, O., Tootoonchi, A., & Dahaghin, Z. (2012). Preconcentration and separation of ultra-trace palladium ion using pyridinefunctionalized magnetic nanoparticles, Microchimica Acta, 178(3-4), 261-268.
https://doi.org/10.1007/s00604-012-0815-4
Bhatluri, K. K., Manna, M. S., Ghoshal, A. K., & Saha, P. (2017). Separation of cadmium and lead from wastewater using supported liquid membrane integrated with in-situ electrodeposition, Electrochimica Acta, 229, 1-7.
https://doi.org/10.1016/j.electacta.2017.01.090
Borgo, S. D., Jovanovski, V., Pihlar, B., & Hocevar, S. B. (2015). Operation of bismuth film electrode in more acidic medium, Electrochimica Acta, 155 196-200.
https://doi.org/10.1016/j.electacta.2014.12.086
Cargnelutti, D., Tabaldi, L. A., Spanevello, R. M., de Oliveira, G., Battisti, V., Redin, M., … Chitolina, M. R. & Morsch, V. M. (2006). Mercury toxicity induces oxidative stress in growing cucumber seedlings. Chemosphere, 65(6), 999-1006.
https://doi.org/10.1016/j.chemosphere.2006.03.037
Dahaghin, Z., Mousavi, H. Z., & Sajjadi, S. M. (2017a). Trace amounts of Cd (II), Cu (II) and Pb (II) ions monitoring using Fe3O4@graphene oxide nanocomposite modified via 2-mercaptobenzothiazole as a novel and efficient nano sorbent. Journal of Molecular Liquids, 231, 386-395.
https://doi.org/10.1016/j.molliq.2017.02.023
Dahaghin, Z., Zavvar, H., & Sajjadi, S. M. (2017b). Synthesis and Application of Magnetic Graphene Oxide Modified with 8‐Hydroxyquinoline for Extraction and Preconcentration of Trace Heavy Metal Ions. Chemistry Select, 2(3), 1282-1289. https://doi.org/10.1002/slct.201601765
Ferreira, M. A., & Barros, A. A. (2002). Determination of As(III) and arsenic(V) in natural waters by cathodic stripping voltammetry at a hanging mercury drop electrode. Analytical Chimica Acta, 459(1), 151-159.
https://doi.org/10.1016/S0003-2670(02)00086-7
Gumpu, M.B., Sethuraman, S., Krishnan, U. M., & Rayappan, J.B.B. (2015). A review on detection of heavy metal ions in water – an electrochemical approach. Sensors and Actuators B: Chemical, 213, 515–533. https://doi.org/10.1016/j.snb.2015.02.122
Huang, M. R., Ding, Y. B., & Li, X. G. (2014). Combinatorial screening of potentiometric Pb (II) sensors from polysulfoaminoanthraquinone solid ionophore. ACS Combinatorial Science, 16 (3), 128-138.
https://doi.org/10.1021/co400140g
Huang, M. R., Rao, X. W., Li, X. G., & Ding, Y. B. (2011). Lead ion-selective electrodes based onpolyphenylenediamine as unique solid ionophores. Talanta, 85(3), 1575-1584.
https://doi.org/10.1016/j.talanta.2011.06.049
Kefala, G., Economou, A., & Voulgaropoulos, A. (2004). A study of Nafion-coated bismuth-film electrodes for the determination of trace metals by anodic stripping voltammetry. Analyst, 129 1082–1090. https://doi.org/10.1039/B404978K
Karri, V., Schuhmacher, M., & Kumar, V. (2016). Heavy metals (Pb, Cd, As and MeHg) as risk factors for cognitive dysfunction: A general review of metal mixture mechanism in brain. Environmental Toxicology and Pharmacology, 48, 203-213.
https://doi.org/10.1016/j.etap.2016.09.016
Lakshmi, D., Sharma, P. S., & Prasad, B. B. (2007). Imprinted polymer-modified hanging mercury drop electrode for differential pulse cathodic stripping voltametric analysis of creatine. Biosensors and Bioelectronics 22(12), 3302-3308.https://doi.org/10.1016/j.bios.2006.12.011
Liang, P., Li, J., & Yang, X. (2005). Cloud point extraction preconcentration of trace cadmium as 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone complex and determination by flame atomic absorption spectrometry. Microchimica Acta, 152, 47-51. https://doi.org/10.1007/s00604-005-0415-7
Lin, J., Zhang, F., & Lei, Y. (2016). Dietary intake and urinary level of cadmium and breast cancer risk: A meta-analysis. Cancer Epidemiol, 42, 101-107. https://doi.org/10.1016/j.canep.2016.04.002
Pei, X., Kang, W., Yue, W., Bange, A., Heineman, W. R., & Papautsky, I. (2014). Improving Reproducibility of Lab-on-a-Chip Sensor with Bismuth Working Electrode for Determining Zn in Serum by Anodic Stripping Voltammetry. Journal of the Electrochemical Society, 161(2), B3160-B3166. https://doi.org/10.1149/2.022402jes
Singh, D. K. & Mishra, S. (2009). Synthesis, characterization and removal of Cd (II) using Cd (II) ion-imprinted polymer. Journal of Hazardous Materials, 164(2-3), 1547-1551. https://doi.org/10.1016/j.jhazmat.2008.09.112
Valera, D., Sánchez, M., Domínguez, J. R., Alvarado, J., Espinoza-Montero, P. J., Carrera, P., Bonilla, P., Manciati, C., González, G. & Fernández, L. (2018). Electrochemical determination of lead in human blood serum and urine by anodic stripping voltammetry using glassy carbon electrodes covered with Ag–Hg and Ag–Bi bimetallic nanoparticles. Analytical Methods, 10(34), 4114-412.
https://doi.org/10.1039/C8AY01314D
Wan, M. W., Kan, C. C., Rogel, B. D., & Dalida, M. L. P. (2010). Adsorption of copper (II) and lead (II) ions from aqueous solution on chitosan-coated sand. Carbohydrate Polymers, 80(3), 891-899. https://doi.org/10.1016/j.carbpol.2009.12.048
Xiong, S., Ye, S., Hu, X., & Xie, F. (2016). Electrochemical detection of ultra-trace Cu (II) and interaction mechanism analysis between amine-groups functionalized CoFe2O4/reduced graphene oxide composites and metal ion. Electrochimica Acta, 217,24-33.
https://doi.org/10.1016/j.electacta.2016.09.060
Zhang, H., Shuang, S., Wang, G., Guo, Y., Tong, X., Yang, P., … Qin, Y. (2015). TiO2-graphene hybrid nanostructures by atomic layer deposition with enhanced electrochemical performance for Pb(II) and Cd(II) detection. RSC Advances, 5, 4343-4349.
https://doi.org/10.1039/C4RA09779C
Zhu, X., Zhu, X., & Wang, B. (2006). Determination of trace cadmium in water samples by graphite furnace atomic absorption spectrometry after cloud point extraction. Microchimica Acta, 154 (1) 95-100. https://doi.org/10.1007/s00604-005-0476-7
Zhu, X. S., Gao, C., Choi, J. W., Bishop, P. L., & Ahn, C. H. (2004). On-chip generated mercury microelectrode for heavy metal ion detection. Lab on a Chip, 5, 212-217.