Evaluación del desempeño de sistemas de ventilación en salones de clase: Estudio numérico en edificios universitarios en Panamá
DOI:
https://doi.org/10.37135/ns.01.09.07Palabras clave:
Calidad del aire, confort térmico, dióxido de carbono, edificios, renovación de aire, simulación dinámica, ventilación mecánica, ventilación naturalResumen
La calidad del aire juega un papel decisivo en el rendimiento de los ocupantes de espacios interiores; además, se estima que un 30% de la vida de una persona corresponde a su formación académica. El objetivo de esta investigación fue determinar si los sistemas de ventilación de los edificios de la Universidad Tecnológica de Panamá proveen una calidad de aire apropiada para sus alumnos, mediante la evaluación del desempeño de la ventilación en modo pasivo y mecánico; se utilizó la interfaz dinámica DesignBuilder para simular los casos de estudio. Los indicadores utilizados fueron la concentración de CO2, las tasas de renovación de aire interior y el confort térmico. Para esto se tomaron como referencia los requerimientos mínimos de la normativa panameña y normativas internacionales. Los resultados demostraron que el uso de ventilación natural resulta insuficiente debido a la inconformidad térmica y altas concentraciones de CO2. Por el contrario, el uso de ventilación mecánica mejoró los niveles de confort térmico pero la concentración de CO2 se mantuvo ligeramente fuera de límites aceptables. Estos resultados demostraron que los edificios no están diseñados para operar en modo pasivo, lo que restringe su operación exclusivamente en modo mecánico.
Descargas
Referencias
ASHRAE. (2009). Indoor Air Quality Guide: Best Practices for Design, Construction and Commissioning (Pap/Cdr ed.). Recuperado de: https://www.ashrae.org/technical-resources/bookstore/indoor-air-quality-guide
ASHRAE. (2019). ANSI/ASHRAE Standard 62.1-2019: Ventilation for Acceptable Indoor Air Quality. Recuperado de: https://ashrae.iwrapper.com/ASHRAE_PREVIEW_ONLY_STANDARDS/STD_62.1_2019
ASHRAE. (2020). ANSI/ASHRAE Standard 55-2020: Thermal Environmental Conditions for Human Occupancy. Recuperado de: https://ashrae.iwrapper.com/ASHRAE_PREVIEW_ONLY_STANDARDS/STD_55_2020
Ascione, F., De Masi, R. F., Mastellone, M., & Vanoli, G. P. (2021). The design of safe classrooms of educational buildings for facing contagions and transmission of diseases: A novel approach combining audits, calibrated energy models, building performance (BPS) and computational fluid dynamic (CFD) simulations. Energy and Buildings, 230, 110533. https://doi.org/10.1016/j.enbuild.2020.110533
ASHRAE Epidemic Task Force. (2020). Laboratory Subcommittee Guidance Document. Recuperado de: https://www.ashrae.org/file%20library/technical%20resources/covid-19/ashrae-etf---lab-guidance.pdf
Atkinson, J., Chartier, Y., Pessoa-Silva, C.L., Jensen, P., Li, Y., Seto, W.-H., & World Health Organization (2009). WHO Publications/Guidelines: Natural Ventilation for Infection Control in Health-Care Settings. Recuperado de: https://www.who.int/water_sanitation_health/publications/natural_ventilation.pdf
Bakó-Biró, Z., Clements-Croome, D. J., Kochhar, N., Awbi, H. B., & Williams, M. J. (2012). Ventilation rates in schools and pupils’ performance. Building and Environment, 48(1), 215–223. https://doi.org/10.1016/j.buildenv.2011.08.018
Batterman, S., Su, F.-C., Wald, A., Watkins, F., Godwin, C., & Thun, G. (2017). Ventilation rates in recently constructed U.S. school classrooms. Indoor Air, 27(5), 880–890. https://doi.org/10.1111/ina.12384
Calama-González, C. M., León-Rodríguez, Á. L., & Suárez, R. (2019). Indoor Air Quality Assessment: Comparison of Ventilation Scenarios for Retrofitting Classrooms in a Hot Climate. Energies, 12(24), 4607. https://doi.org/10.3390/en12244607
Cruz, M., Querol, X., Alastuey, A., Riediker, M., Felisi, J. M., Beko, G., … Carslaw, N. (2020). Guide for ventilation towards healthy classrooms. Recuperado de: https://scoeh.ch/wp-content/uploads/2021/01/Guide-for-ventilation_Indairpollnet.pdf
D’Ambrosio, F., Bellia, L., Boerstra, A., Dijken, F. Van, Ianniello, E., Lopardo, G., … Romagnoni, P. (2010). Environment and Energy Efficiency in Schools (Part 1), REHVA Guidebook Number vol. 13, REHVA, Brussels, Belgium. Recuperado de: https://www.rehva.eu/eshop/detail/indoor-environment-and-energy-efficiency-in-educational-buildings
DesignBuilder Software (2021). Design Building: Summary Outputs (KPIs). Recuperado de: https://designbuilder.co.uk/helpv6.0/Content/KPIs.htm
European Commitee for Standarization (2006). prEN 13779:2006: Ventilation for non-residential buildings - Performance requirements for ventilation and room-conditioning systems. Recuperado de http://www.cres.gr/greenbuilding/PDF/prend/set4/WI_25_Pre-FV_version_prEN_13779_Ventilation_for_non-resitential_buildings.pdf
Fantozzi, F., & Rocca, M. (2020). An extensive collection of evaluation indicators to assess occupants’ health and comfort in indoor environment. Atmosphere, 11(1), p. 90. https://doi.org/10.3390/atmos11010090
Fisk, W. J. (2017). The ventilation problem in schools: literature review. Indoor Air, 27(6), 1039–1051. https://doi.org/10.1111/ina.12403
Google Earth. (s. f.). Google Earth Universidad Tecnológica de Panamá. Recuperado de: https://earth.google.com/web/search/Universidad+Tecnol%c3%b3gica+de+Panam%c3%a1,+V%c3%ada+Centenario,+Panam%c3%a1/@9.02354187,-79.53286043,65.91719949a,450.7178551d,35y,-21.18805442h,13.26082563t,0r/data=CigiJgokCTB9hRg1AzVAES99hRg1AzXAGaohK5nFuUlAIachK5nFuUnA?hl=es
Hu, H. H. (2012). Computational Fluid Dynamics. In P. K. Kundu, I. M. Cohen & D. R. Dowling (Eds.), Fluid Mechanics (pp. 421–472). Elsevier. https://doi.org/10.1016/B978-0-12-382100-3.10010-1
Ji, Y., Lomas, K. J., & Cook, M. J. (2009). Hybrid ventilation for low energy building design in south China. Building and Environment, 44(11), 2245–2255. https://doi.org/10.1016/j.buildenv.2009.02.015
Jiménez, A. (2021). UF0422: Mantenimiento correctivo de instalaciones de climatización y ventilación-extracción. Recuperado de: https://books.google.com.pa/books?id=RwIwEAAAQBAJ&printsec=frontcover&hl=es&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
Junta Técnica de Ingeniería y Arquitectura (JTIA), & Asociación Panameña de Aire Acondicionado y Ventilación (APAYRE). (2014). Resolución 117 de 11 de diciembre de 2013: Por medio de la cual se aprueba el Reglamento de Aire Acondicionado y Ventilación para la República de Panamá. Recuperado de: https://www.asamblea.gob.pa/APPS/LEGISPAN/PDF_NORMAS/2010/2013/2013_608_1338.pdf
Ma’bdeh, S. N., Al-Zghoul, A., Alradaideh, T., Bataineh, A., & Ahmad, S. (2020). Simulation study for natural ventilation retrofitting techniques in educational classrooms – A case study. Heliyon, 6(10), e05171. https://doi.org/10.1016/j.heliyon.2020.e05171
Ministerio de Educación de Chile. (1989). Decreto 548: Aprueba Normas para la planta física de los locales educacionales que establecen las exigencias mínimas que deben cumplir los establecimientos reconocidos como cooperadores de la función educacional del Estado, según el nivel y modalidad de la enseñanza que impartan. Recuperado de: https://www.bcn.cl/leychile/navegar?idNorma=14166
Ministerio de Industria, Energía y Turismo del Gobierno de España. Comentarios RITE-2007: Reglamento de Instalaciones Térmicas en los Edificios. (2007). Recuperado de: https://www.idae.es/uploads/documentos/documentos_10540_Comentarios_RITE_GT7_07_2200d691.pdf
Ministerio de Salud de Costa Rica. (2021). LS-SI-014: Lineamientos para sistemas de ventilación y aire acondicionado (COVID-19). Recuperado de: https://www.ministeriodesalud.go.cr/sobre_ministerio/prensa/docs/ls_si_014_lineamientos_sistemas_ventilacion_aire_acondicionado_03062021.pdf
Pita, E. (1994). Acondicionamiento de aire: Principios y sistemas de refrigeración. Recuperado de: https://es.scribd.com/document/509292129/Acondicionamiento-de-Aire-Edward-Pita-2da-Edicion
Poza-Casado, I., Gil-Valverde, R., Meiss, A., & Padilla-Marcos, M. Á. (2021). Impact of Air Infiltration on IAQ and Ventilation Efficiency in Higher Educational Classrooms in Spain. Sustainability, 13(12), 6875. https://doi.org/10.3390/su13126875
Pulimeno, M., Piscitelli, P., Colazzo, S., Colao, A., & Miani, A. (2020). Indoor air quality at school and students’ performance: Recommendations of the UNESCO Chair on Health Education and Sustainable Development & the Italian Society of Environmental Medicine (SIMA). Health Promotion Perspectives, Vol. 10, pp. 169–174. https://doi.org/10.34172/hpp.2020.29
Simanic, B., Nordquist, B., Bagge, H., & Johansson, D. (2019). Indoor air temperatures, CO2 concentrations and ventilation rates: Long-term measurements in newly built low-energy schools in Sweden. Journal of Building Engineering, 25(6), 100827. https://doi.org/10.1016/j.jobe.2019.100827
Sun, Y., Wang, Z., Zhang, Y., & Sundell, J. (2011). In China, Students in Crowded Dormitories with a Low Ventilation Rate Have More Common Colds: Evidence for Airborne Transmission. PLoS ONE, 6(11), e27140. https://doi.org/10.1371/journal.pone.0027140
The American Institute of Architects (AIA). (2021). Risk Management Plan for Buildings - AIA. (April). Recuperado de: https://www.aia.org/resources/6299432-risk-management-plan-for-buildings?editing=true&tools=true
Trebilcock, M., Soto, J., Figueroa, R., & Piderit-Moreno, B. (2016). Metodología para el diseño de edificios educacionales confortables y resilientes. AUS, (20), 70–76. https://doi.org/10.4206/aus.2016.n20-11
United States Environmental Protection Agency (EPA). (1991). Indoor Air Facts No. 4 Sick Building Syndrome. EPA - Air & Radiation (6609J), Research and Development (MD-56), 56, 1–4. Recuperado de: https://www.epa.gov/sites/production/files/2014-08/documents/sick_building_factsheet.pdf
Vartires, A., Damian, A., Olariu, A., Istrate, A., Catalina, T., & Zorilă, E. (2018). Challenges in achieving a high indoor air quality in an educational building. Revista Romana de Inginerie Civila, 9(1), 28–42. Recuperado de: https://www.proquest.com/openview/59015e81a32a57ead207E51a45139f95/1.pdf?pq-origsite=gscholar&cbl=2029207
Wargocki, P., Porras-Salazar, J. A., Contreras-Espinoza, S., & Bahnfleth, W. (2020). The relationships between classroom air quality and children’s performance in school. Building and Environment, 173(February), 106749. https://doi.org/10.1016/j.buildenv.2020.106749
Wargocki, P., & Wyon, D. P. (2013). Providing better thermal and air quality conditions in school classrooms would be cost-effective. Building and Environment, 59, 581–589. https://doi.org/10.1016/j.buildenv.2012.10.007
Williams, S. (2017). Welcome to Your World: How the Built Environment Shapes Our Lives. New York, EE.UU. HarperCollins.
Wisconsin WisDHS. (2019). Carbon Dioxide | Wisconsin Department of Health Services. Retrieved December 14, 2021, from Wisconsin Department of Health Services website: https://www.dhs.wisconsin.gov/chemical/carbondioxide.htm