Mejoras al desempeño energético en edificaciones abordando los desafíos actuales del lado de la demanda: Una revisión de contribuciones de Latinoamérica

Autores/as

DOI:

https://doi.org/10.37135/ns.01.06.10

Palabras clave:

Desempeño energético de edificios, eficiencia energética, lado de la demanda, Latinoamérica, uso de la energía

Resumen

Debido a la actual crisis energética mundial y como resultado de los acuerdos de las naciones participantes, se han establecido medidas por las Naciones Unidas para superar los desafíos relacionados. A pesar de los esfuerzos para incluir a los países subdesarrollados en dicho proceso de decisión, la mayoría de las contribuciones continúan estando inclinadas al hemisferio norte. Así, este trabajo se enfoca en destacar los esfuerzos realizados por los países Latinoamericanos (LA), entre 2018-2020, para contribuir específicamente en las mejoras en el desempeño energético en edificaciones para abordar los desafíos actuales del lado de la demanda. Dichos desafíos están relacionados con la gestión de la demanda: (i) picos de demanda no controlados y (ii) capacidad de transmisión y distribución insuficiente en la red eléctrica. Las contribuciones de LA se clasifican en independientes, colaboración y aplicación. Los estudios también se clasificaron en teóricos, experimentales, ambos y revisiones. La metodología de filtrado de dos etapas implementada dio como resultado un total de 176 documentos como lista inicial. Al centrarse sólo en los aspectos relacionados con los ocupantes, las soluciones pasivas y de bajo consumo y las técnicas de previsión para edificios inteligentes, la lista procesada resultó en un total de 73 estudios. Los resultados mostraron que los esfuerzos realizados por los países LA residen en su mayoría en la implementación de estrategias previamente desarrolladas y propuestas por países desarrollados, para realizar estudios de caso como independiente o en colaboración. Finalmente, se presenta un análisis de fortalezas, oportunidades, debilidades y amenazas (FODA) para explicar los resultados obtenidos.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Antonopoulos, I., Robu, V., Couraud, B., Kirli, D., Norbu, S., Kiprakis, A., … Wattam, S. (2020). Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review. Renewable and Sustainable Energy Reviews, 130(April), 109899. https://doi.org/10.1016/j.rser.2020.109899

Arauz, J., Mora, D., & Chen, M. (2019). Impact of the Envelope Layout in the Thermal Behavior of Buildings in Panama: A Numerical Study. 2019 7th International Engineering, Sciences and Technology Conference (IESTEC), 209–214. https://doi.org/10.1109/IESTEC46403.2019.00-74

Avendaño-Vera, C., Martinez-Soto, A., & Marincioni, V. (2020). Determination of optimal thermal inertia of building materials for housing in different Chilean climate zones. Renewable and Sustainable Energy Reviews, 131, 110031. https://doi.org/https://doi.org/10.1016/j.rser.2020.110031

Ávila-Hernández, A., Simá, E., Xamán, J., Hernández-Pérez, I., Téllez-Velázquez, E., & Chagolla-Aranda, M. A. (2020). Test box experiment and simulations of a green-roof: Thermal and energy performance of a residential building standard for Mexico. Energy and Buildings, 209, 109709. https://doi.org/https://doi.org/10.1016/j.enbuild.2019.109709

Bavaresco, M. V., & Ghisi, E. (2020). A low-cost framework to establish internal blind control patterns and enable simulation-based user-centric design. Journal of Building Engineering, 28, 101077. https://doi.org/https://doi.org/10.1016/j.jobe.2019.101077

Bavaresco, M. V, D'Oca, S., Ghisi, E., & Pisello, A. L. (2020). Assessing underlying effects on the choices of adaptive behaviours in offices through an interdisciplinary framework. Building and Environment, 181, 107086. https://doi.org/https://doi.org/10.1016/j.buildenv.2020.107086

Becerra, M., Jerez, A., Valenzuela, M., Garcés, H. O., & Demarco, R. (2018). Life quality disparity: Analysis of indoor comfort gaps for Chilean households. Energy Policy, 121, 190–201. https://doi.org/https://doi.org/10.1016/j.enpol.2018.06.010

Bimaganbetova, M., Memon, S. A., & Sheriyev, A. (2020). Performance evaluation of phase change materials suitable for cities representing the whole tropical savanna climate region. Renewable Energy, 148, 402–416. https://doi.org/https://doi.org/10.1016/j.renene.2019.10.046

Bonilla, D., Samaniego, M. G., Ramos, R., & Campbell, H. (2018). Practical and low-cost monitoring tool for building energy management systems using virtual instrumentation. Sustainable Cities and Society, 39, 155–162. https://doi.org/https://doi.org/10.1016/j.scs.2018.02.009

Borgstein, E. H., Lamberts, R., & Hensen, J. L. M. (2018). Mapping failures in energy and environmental performance of buildings. Energy and Buildings, 158, 476–485. https://doi.org/https://doi.org/10.1016/j.enbuild.2017.10.038

Boutet, M. L., Hernández, A. L., & Jacobo, G. J. (2020). Methodology of quantitative analysis and diagnosis of higro-thermal and lighting monitoring for school buildings in a hot-humid mid-latitude climate. Renewable Energy, 145, 2463–2476. https://doi.org/https://doi.org/10.1016/j.renene.2019.08.009

Boya, C. (2019a). Analyzing the Relationship between Temperature and Load Demand in the Regions with the Highest Electricity Consumption in the Republic of Panama. 2019 7th International Engineering, Sciences and Technology Conference (IESTEC), 132–137. https://doi.org/10.1109/IESTEC46403.2019.00-88

Boya, C. (2019b). Identification of patterns of electricity consumption of the city of Panama using independent component analysis. Proceedings - 2019 7th International Engineering, Sciences and Technology Conference, IESTEC 2019, 155–160. https://doi.org/10.1109/IESTEC46403.2019.00-84

Bunn, D. W. (2000). Forecasting loads and prices in competitive power markets. Proceedings of the IEEE, 88(2), 163–169. https://doi.org/10.1109/5.823996

Canto, A., Batista, M., Sanchez, J., Moreno, M., & James, A. (2018). Aislante térmico a base de materiales orgánicos. Revista de Iniciación Científica, 4, 48–51. https://doi.org/10.33412/rev-ric.v4.0.1819

Carvajal, R., Robles, J., Solís, J., Vargas, J., & Marín, N. (2018). Sistema de análisis energético y de temperatura de las ventanas de un aula de clase con y sin aislamiento térmico. RIC, 4(2), 26–30. https://doi.org/10.33412/rev-ric.v4.2.2146

Ceballos-Fuentealba, I., Álvarez-Miranda, E., Torres-Fuchslocher, C., del Campo-Hitschfeld, M. L., & Díaz-Guerrero, J. (2019). A simulation and optimisation methodology for choosing energy efficiency measures in non-residential buildings. Applied Energy, 256, 113953. https://doi.org/https://doi.org/10.1016/j.apenergy.2019.113953

Chen, M., Chang, I., Bruneau, D., & Sempey, A. (2020). Assessment of Different Approaches to Model the Thermal Behavior of a Passive Building via System Identification Process. In Lecture Notes in Networks and Systems (Vol. 112). https://doi.org/10.1007/978-3-030-40309-6_18

Chen, M. (2018). On the coupling between natural ventilation and sensible energy charge and discharge in buildings : an experimental and modeling approach (Université de Bordeaux). Retrieved from https://tel.archives-ouvertes.fr/tel-01932939

Chen, M., Bruneau, D., Sempey, A., & Mora, L. (2018). Statistical analysis of architectural features effects on indoor environmental conditions in a Plus Energy House prototype. Passive and Low Energy Architecture (PLEA) - Hong Kong. Hong Kong.

Chen, M., Bruneau, D., Sempey, A., & Mora, L. (2019). Qualification of the Energy Charge-Discharge of a Concrete Slab in a Naturally Ventilated Building. 2019 7th International Engineering, Sciences and Technology Conference (IESTEC), 188–192. https://doi.org/10.1109/IESTEC46403.2019.00-78

Chen, M., Garzola, D., Delgado, N., Jiménez, J. U., & Mora, D. (2020). Inspection of Biomimicry Approaches as an Alternative to Address Climate-Related Energy Building Challenges: A Framework for Application in Panama. Biomimetics, 5(3), 40. https://doi.org/10.3390/biomimetics5030040

Chen, C. F., Yilmaz, S., Pisello, A. L., De Simone, M., Kim, A., Hong, T., … Zhu, Y. (2020). The impacts of building characteristics, social psychological and cultural factors on indoor environment quality productivity belief. Building and Environment, 107189. https://doi.org/https://doi.org/10.1016/j.buildenv.2020.107189

Chen, M., Mora, D., Fajilla, G., De Simone, M., Austin, M. C., Mora, D., … De Simone, M. (2020). Assessment of the Sensor-fusion Technique for Occupancy Detection in a University Office. I+D Tecnológico, 16(2), 2020. https://doi.org/10.33412/IDT.V16.2.2838

Costa, M. L., Freire, M. R., & Kiperstok, A. (2019). Strategies for thermal comfort in university buildings - The case of the faculty of architecture at the Federal University of Bahia, Brazil. Journal of Environmental Management, 239, 114–123. https://doi.org/https://doi.org/10.1016/j.jenvman.2019.03.004

Cóstola, D., Carreira, G., Fernandes, L. O., & Labaki, L. C. (2019). Seasonal Thermal Sensation Vote – An indicator for long-term energy performance of dwellings with no HVAC systems. Energy and Buildings, 187, 64–76. https://doi.org/https://doi.org/10.1016/j.enbuild.2019.01.049

Cruz, L. M., Alvarez, D. L., Al-Sumaiti, A. S., & Rivera, S. (2020). Load curtailment optimization using the PSO algorithm for enhancing the reliability of distribution networks. Energies, 13(12). https://doi.org/10.3390/en13123236

Cruz, L. M., Alvarez, D. L., Rivera, S. R., & Herrera, F. A. (2019). Short-Term Demand Forecast Using Fourier Series. 2019 IEEE Workshop on Power Electronics and Power Quality Applications, PEPQA 2019 - Proceedings, 3–7. https://doi.org/10.1109/PEPQA.2019.8851533

Dalbem, R., Grala da Cunha, E., Vicente, R., Figueiredo, A., Oliveira, R., & da Silva, A. C. S. B. (2019). Optimisation of a social housing for south of Brazil: From basic performance standard to passive house concept. Energy, 167, 1278–1296. https://doi.org/https://doi.org/10.1016/j.energy.2018.11.053

de Abreu-Harbich, L. V, Chaves, V. L. A., & Brandstetter, M. C. G. O. (2018). Evaluation of strategies that improve the thermal comfort and energy saving of a classroom of an institutional building in a tropical climate. Building and Environment, 135, 257–268. https://doi.org/https://doi.org/10.1016/j.buildenv.2018.03.017

de la Paz Diulio, M., Mercader-Moyano, P., & Gómez, A. F. (2019). The influence of the envelope in the preventive conservation of books and paper records. Case study: Libraries and archives in La Plata, Argentina. Energy and Buildings, 183, 727–738. https://doi.org/https://doi.org/10.1016/j.enbuild.2018.11.048

de Oliveira Veloso, A. C., Gonçalves de Souza, R. V., & dos Santos, F. N. (2020). Energy benchmarking for office building towers in mild temperate climate. Energy and Buildings, 222, 110059. https://doi.org/https://doi.org/10.1016/j.enbuild.2020.110059

Diaz-Mendez, S. E., Torres-Rodríguez, A. A., Abatal, M., Soberanis, M. A. E., Bassam, A., & Pedraza-Basulto, G. K. (2018). Economic, environmental and health co-benefits of the use of advanced control strategies for lighting in buildings of Mexico. Energy Policy, 113, 401–409. https://doi.org/https://doi.org/10.1016/j.enpol.2017.11.028

Diaz, J., Vuelvas, J., Ruiz, F., & Patino, D. (2019). Modelo de predicción de demanda de energía eléctrica mediante técnicas. 16, 467–479.

Dietz, A., Vera, S., Bustamante, W., & Flamant, G. (2020). Multi-objective optimization to balance thermal comfort and energy use in a mining camp located in the Andes Mountains at high altitude. Energy, 199, 117121. https://doi.org/https://doi.org/10.1016/j.energy.2020.117121

Energy in Buildings and communities programme. (2019). IEA EBC - Annex 79 - Occupant-Centric Building Design and Operation. Retrieved from https://annex79.iea-ebc.org/

Flores-Larsen, S., Filippín, C., & Barea, G. (2019). Impact of climate change on energy use and bioclimatic design of residential buildings in the 21st century in Argentina. Energy and Buildings, 184, 216–229. https://doi.org/https://doi.org/10.1016/j.enbuild.2018.12.015

García-Guarin, J., Rodriguez, D., Alvarez, D., Rivera, S., Cortes, C., Guzman, A., … Bretas, N. (2019). Smart microgrids operation considering a variable neighborhood search: The differential evolutionary particle swarm optimization algorithm. Energies, 12(16), 1–13. https://doi.org/10.3390/en12163149

García, A., Olivieri, F., Larrumbide, E., & Ávila, P. (2019). Thermal comfort assessment in naturally ventilated offices located in a cold tropical climate, Bogotá. Building and Environment, 158, 237–247. https://doi.org/https://doi.org/10.1016/j.buildenv.2019.05.013

García, J., Alvarez, D., & Rivera, S. (2020). Ensemble Based Optimization for Electric Demand Forecast: Genetic Programming and Heuristic Algorithms. Revista Internacional de Métodos Numéricos Para Cálculo y Diseño En Ingeniería, 36(3), 1–12. https://doi.org/10.23967/j.rimni.2020.07.001

García, J. R., Zambrano P, A. A., & Duarte, O. (2018). Implementation of an Energy Demand Forecasting Model under a Smart Grids Environment. Proceedings of the 2018 IEEE PES Transmission and Distribution Conference and Exhibition - Latin America, T and D-LA 2018. https://doi.org/10.1109/TDC-LA.2018.8511754

García Kerdan, I., Morillón Gálvez, D., Sousa, G., Suárez de la Fuente, S., Silva, R., & Hawkes, A. (2019). Thermodynamic and thermal comfort optimisation of a coastal social house considering the influence of the thermal breeze. Building and Environment, 155, 224–246. https://doi.org/https://doi.org/10.1016/j.buildenv.2019.03.015

Geraldi, M. S., & Ghisi, E. (2020). Mapping the energy usage in Brazilian public schools. Energy and Buildings, 224, 110209. https://doi.org/https://doi.org/10.1016/j.enbuild.2020.110209

Geraldo, R. H., Canaes de Aguiar, R., & Camarini, G. (2020). Thermal performance assessment of alkali-activated mortar boards. Journal of Building Engineering, 31, 101362. https://doi.org/https://doi.org/10.1016/j.jobe.2020.101362

González-Julián, E., Xamán, J., Moraga, N. O., Chávez, Y., Zavala-Guillén, I., & Simá, E. (2018). Annual thermal evaluation of a double pane window using glazing available in the Mexican market. Applied Thermal Engineering, 143, 100–111. https://doi.org/https://doi.org/10.1016/j.applthermaleng.2018.07.053

Guerra-Santin, O., Itard, L., Guerra Santin, O., Itard, L., Guerra-Santin, O., & Itard, L. (2010). Occupants' behaviour: determinants and effects on residential heating consumption. Building Research & Information, 38(3), 318–338. https://doi.org/10.1080/09613211003661074

Henríquez, J., & Kristjanpoller, W. (2019). A combined Independent Component Analysis–Neural Network model for forecasting exchange rate variation. Applied Soft Computing Journal, 83. https://doi.org/10.1016/j.asoc.2019.105654

Hernández-López, I., Xamán, J., Zavala-Guillén, I., Hernández-Pérez, I., Moreno-Bernal, P., & Chávez, Y. (2020). Thermal performance of a solar façade system for building ventilation in the southeast of Mexico. Renewable Energy, 145, 294–307. https://doi.org/https://doi.org/10.1016/j.renene.2019.06.026

Hernández-Pérez, I., Xamán, J., Macías-Melo, E. V, Aguilar-Castro, K. M., Zavala-Guillén, I., Hernández-López, I., & Simá, E. (2018). Experimental thermal evaluation of building roofs with conventional and reflective coatings. Energy and Buildings, 158, 569–579. https://doi.org/https://doi.org/10.1016/j.enbuild.2017.09.085

Hernández-Pérez, I., Zavala-Guillén, I., Xamán, J., Belman-Flores, J. M., Macias-Melo, E. V, & Aguilar-Castro, K. M. (2019). Test box experiment to assess the impact of waterproofing materials on the energy gain of building roofs in Mexico. Energy, 186, 115847. https://doi.org/https://doi.org/10.1016/j.energy.2019.07.177

Hernández, D. A., & Baeza, J. M. (2019). Methodology for Short Term Forecasting for Demand Prediction and Renewable Energy in Electrical Distribution Systems. IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies, CHILECON 2019, 1–7. https://doi.org/10.1109/CHILECON47746.2019.8987993

International energy agency & energy in buildings and communities programme. Total Energy Use in Buildings: Analysis and Evaluation Methods (Annex 53) Project Summary Report. , (2016).

International Renewable Energy Agency (IRENA). (2020). https://www.irena.org/

Javed, F., Arshad, N., Wallin, F., Vassileva, I., & Dahlquist, E. (2012). Forecasting for demand response in smart grids: An analysis on use of anthropologic and structural data and short term multiple loads forecasting. Applied Energy, 96, 150–160. https://doi.org/10.1016/j.apenergy.2012.02.027

Jiménez, J., Pertuz, A., Quintero, C. G., & Montaña, J. (2019). for Long-Term Demand Forecasting. 17(1).

Khan, I. (2019). Energy-saving behaviour as a demand-side management strategy in the developing world: the case of Bangladesh. International Journal of Energy and Environmental Engineering, 10(4), 493–510. https://doi.org/10.1007/s40095-019-0302-3

Kolokotroni, M., Shittu, E., Santos, T., Ramowski, L., Mollard, A., Rowe, K., Novieto, D. (2018). Cool roofs: High tech low cost solution for energy efficiency and thermal comfort in low rise low income houses in high solar radiation countries. Energy and Buildings, 176, 58–70. https://doi.org/https://doi.org/10.1016/j.enbuild.2018.07.005

Labastid, D., Bolobosky, M., Mogollón, L., & James, A. (2018). Implementación de un Intercambiador de Calor en Techos de Zinc. KEG, 3(1), 747. https://doi.org/10.18502/keg.v3i1.1478

Lugo, S., Morales, L. I., Best, R., Gómez, V. H., & García-Valladares, O. (2019). Numerical simulation and experimental validation of an outdoor-swimming-pool solar heating system in warm climates. Solar Energy, 189, 45–56. https://doi.org/https://doi.org/10.1016/j.solener.2019.07.041

Maciel, A. C. F., & Carvalho, M. T. (2019). Operational energy of opaque ventilated façades in Brazil. Journal of Building Engineering, 25, 100775. https://doi.org/https://doi.org/10.1016/j.jobe.2019.100775

Marín-Restrepo, L., Trebilcock, M., & Gillott, M. (2020). Occupant action patterns regarding spatial and human factors in office environments. Energy and Buildings, 214, 109889. https://doi.org/https://doi.org/10.1016/j.enbuild.2020.109889

Marrero, L., García-Santander, L., Carrizo, D., & Ulloa, F. (2019). An Application of Load Forecasting Based on ARIMA Models and Particle Swarm Optimization. 2019 11th International Symposium on Advanced Topics in Electrical Engineering, ATEE 2019. https://doi.org/10.1109/ATEE.2019.8724891

Maykot, J. K., Rupp, R. F., & Ghisi, E. (2018). Assessment of gender on requirements for thermal comfort in office buildings located in the Brazilian humid subtropical climate. Energy and Buildings, 158, 1170–1183. https://doi.org/https://doi.org/10.1016/j.enbuild.2017.11.036

Mazzocco, M. P., Filippín, C., Sulaiman, H., & Larsen, S. F. (2018). Performance energética de una vivienda social en Argentina y su rehabilitación basada en simulación térmica TT - Energy performance of a social dwelling in Argentina and its retrofitting based on thermal simulation. Ambiente Construído, 18(4), 215–235. https://doi.org/10.1590/s1678-86212018000400302

Mora, D., Carpino, C., & De Simone, M. (2017). Energy consumption of residential buildings and occupancy profiles. A case study in Mediterranean climatic conditions. Energy Efficiency, 11(1), 1–25. https://doi.org/10.1007/s12053-017-9553-0

Mora, D., Carpino, C., & De Simone, M. (2015). Behavioral and physical factors influencing energy building performances in Mediterranean climate. Energy Procedia, 78, 603–608. https://doi.org/10.1016/j.egypro.2015.11.033

Mora, D., Fajilla, G., Chen, M., De Simone, M. (2019). Occupancy patterns obtained by heuristic approaches: cluster analysis and logical flowcharts. A case study in a university office. Energy and Buildings, 186, 147–168. https://doi.org/10.1016/j.enbuild.2019.01.023

Mora, D., De Simone, M. De, Austin, M. C., & Austin, C. (2020). Tecnologías para la detección de ocupación en edificios. Prisma Tecnológico, 11(1), 17–22. https://doi.org/10.33412/pri.v11.1.2530

Moret, S., Babonneau, F., Bierlaire, M., & Maréchal, F. (2020). Overcapacity in European power systems: Analysis and robust optimization approach. Applied Energy, 259(October), 113970. https://doi.org/10.1016/j.apenergy.2019.113970

Neves, L. O., Melo, A. P., & Rodrigues, L. L. (2019). Energy performance of mixed-mode office buildings: Assessing typical construction design practices. Journal of Cleaner Production, 234, 451–466. https://doi.org/https://doi.org/10.1016/j.jclepro.2019.06.216

Nunes, G., de Melo Moura, J. D., Güths, S., Atem, C., & Giglio, T. (2020). Thermo-energetic performance of wooden dwellings: Benefits of cross-laminated timber in Brazilian climates. Journal of Building Engineering, 32, 101468. https://doi.org/https://doi.org/10.1016/j.jobe.2020.101468

OLADE, O. L. de E., BID, & CEPAL. (2017). Eficiencia Energética en América Latina y el Caribe: Avances y Oportunidades.

Ortega del Rosario, M., Chen, M., Bruneau, D., Nadeau, J. P., Sébastian, P., & Jaupard, D. (2020). Operation assessment of an air-PCM unit for summer thermal comfort in a naturally ventilated building. Architectural Science Review, 0(0), 1–10. https://doi.org/10.1080/00038628.2020.1794782

Paredes, G., Vargas, L., & Maldonado, S. (2020). Reconfiguration and reinforcement allocation as applied to hourly medium-term load forecasting of distribution feeders. IET Generation, Transmission and Distribution, 14(9), 1791–1798. https://doi.org/10.1049/iet-gtd.2018.7127

Pérez-Fargallo, A., Pulido-Arcas, J. A., Rubio-Bellido, C., Trebilcock, M., Piderit, B., & Attia, S. (2018). Development of a new adaptive comfort model for low income housing in the central-south of chile. Energy and Buildings, 178, 94–106. https://doi.org/https://doi.org/10.1016/j.enbuild.2018.08.030

Porta-Gándara, M. A., Fernández-Zayas, J. L., & Chargoy-del-Valle, N. (2020). Thermosiphon radiation capacity modelling for the cooling of dwellings. Case Studies in Thermal Engineering, 21, 100724. https://doi.org/https://doi.org/10.1016/j.csite.2020.100724

Ramalho de Freitas, J., & Grala da Cunha, E. (2018). Thermal bridges modeling in South Brazil climate: Three different approaches. Energy and Buildings, 169, 271–282. https://doi.org/https://doi.org/10.1016/j.enbuild.2018.03.044

Ramírez, M. A., Cruz, P. P., & Gutiérrez, A. M. (2019). Fuzzy logic smart electric manager for building energy efficiency. IEEE International Symposium on Industrial Electronics, 2019-June, 1562–1567. https://doi.org/10.1109/ISIE.2019.8781272

Rivera, R. M., & Ledesma, G. (2019). Improvement of Thermal Comfort by Passive Strategies. Case Study: Social Housing in Mexico. International Journal of Structural and Civil Engineering Research, 227–233. https://doi.org/10.18178/ijscer.8.3.227-233

Rocha, H. R. O., Silvestre, L. J., Celeste, W. C., Coura, D. J. C., & Rigo, L. O. (2018). Forecast of distributed electrical generation system capacity based on seasonal micro generators using ELM and PSO. IEEE Latin America Transactions, 16(4), 1136–1141. https://doi.org/10.1109/TLA.2018.8362148

Rodrigues, E., Fernandes, M. S., Gomes, Á., Gaspar, A. R., & Costa, J. J. (2019). Performance-based design of multi-story buildings for a sustainable urban environment: A case study. Renewable and Sustainable Energy Reviews, 113, 109243. https://doi.org/https://doi.org/10.1016/j.rser.2019.109243

Rodríguez, C. M., & D'Alessandro, M. (2019). Indoor thermal comfort review: The tropics as the next frontier. Urban Climate, 29, 100488. https://doi.org/https://doi.org/10.1016/j.uclim.2019.100488

Rojas, C., Cea, M., Iriarte, A., Valdés, G., Navia, R., & Cárdenas-R, J. P. (2019). Thermal insulation materials based on agricultural residual wheat straw and corn husk biomass, for application in sustainable buildings. Sustainable Materials and Technologies, 20, e00102. https://doi.org/https://doi.org/10.1016/j.susmat.2019.e00102

Romero-Quete, D., & Canizares, C. A. (2019). An Affine Arithmetic-Based Energy Management System for Isolated Microgrids. IEEE Transactions on Smart Grid, 10(3), 2989–2998. https://doi.org/10.1109/TSG.2018.2816403

Rossi, M. M., Oliveira Favretto, A. P., Grassi, C., DeCarolis, J., Cho, S., Hill, D., … Ranjithan, R. (2019). Metamodels to assess the thermal performance of naturally ventilated, low-cost houses in Brazil. Energy and Buildings, 204, 109457. https://doi.org/https://doi.org/10.1016/j.enbuild.2019.109457

Rupp, R. F., Kim, J., de Dear, R., & Ghisi, E. (2018). Associations of occupant demographics, thermal history and obesity variables with their thermal comfort in air-conditioned and mixed-mode ventilation office buildings. Building and Environment, 135, 1–9. https://doi.org/https://doi.org/10.1016/j.buildenv.2018.02.049

Salgado-Conrado, L., & Lopez-Montelongo, A. (2019). Barriers and solutions of solar water heaters in Mexican household. Solar Energy, 188, 831–838. https://doi.org/https://doi.org/10.1016/j.solener.2019.06.021

Sanhueza, S. M. R., & Freitas, S. C. L. (2018). Overvoltage forecast in a urban distribution power grid considering PV systems conection. IEEE Latin America Transactions, 16(8), 2221–2227. https://doi.org/10.1109/TLA.2018.8528238

Sant'Anna, D. O., Dos Santos, P. H., Vianna, N. S., & Romero, M. A. (2018). Indoor environmental quality perception and users' satisfaction of conventional and green buildings in Brazil. Sustainable Cities and Society, 43, 95–110. https://doi.org/https://doi.org/10.1016/j.scs.2018.08.027

Silva, A. S., & Ghisi, E. (2020). Estimating the sensitivity of design variables in the thermal and energy performance of buildings through a systematic procedure. Journal of Cleaner Production, 244, 118753. https://doi.org/https://doi.org/10.1016/j.jclepro.2019.118753

Silveira, V. D. C., Pinto, M. M., & Westphal, F. S. (2019). Influence of environmental factors favorable to the development and proliferation of mold in residential buildings in tropical climates. Building and Environment, 166, 106421. https://doi.org/https://doi.org/10.1016/j.buildenv.2019.106421

Silvero, F., Rodrigues, F., & Montelpare, S. (2019). A parametric study and performance evaluation of energy retrofit solutions for buildings located in the hot-humid climate of Paraguay—sensitivity analysis. Energies, 12(3), 427. https://doi.org/10.3390/en12030427

Soares Gonçalves, J. C., Roberta, M. D., Mulfarth, K., Lima, G. L., & Ferreira, A., (2018). Revealing the thermal environmental quality of the high-density residential tall building from the Brazilian bioclimatic modernism: The case-study of Copan building. Energy and Buildings, 175, 17–29. https://doi.org/https://doi.org/10.1016/j.enbuild.2018.06.054

Trebilcock, M., Soto-Muñoz, J., & Piggot-Navarrete, J. (2020). Evaluation of thermal comfort standards in office buildings of Chile: Thermal sensation and preference assessment. Building and Environment, 183, 107158. https://doi.org/https://doi.org/10.1016/j.buildenv.2020.107158

Triano-Juárez, J., Macias-Melo, E. V, Hernández-Pérez, I., Aguilar-Castro, K. M., & Xamán, J. (2020). Thermal behavior of a phase change material in a building roof with and without reflective coating in a warm humid zone. Journal of Building Engineering, 101648. https://doi.org/https://doi.org/10.1016/j.jobe.2020.101648

Tubelo, R., Rodrigues, L., Gillott, M., & Gonçalves Soares, J. C. (2018). Cost-effective envelope optimisation for social housing in Brazil's moderate climates zones. Building and Environment, 133, 213–227. https://doi.org/https://doi.org/10.1016/j.buildenv.2018.01.038

Uriarte-Flores, J., Xamán, J., Chávez, Y., Hernández-López, I., Moraga, N. O., & Aguilar, J. O. (2019). Thermal performance of walls with passive cooling techniques using traditional materials available in the Mexican market. Applied Thermal Engineering, 149, 1154–1169. https://doi.org/https://doi.org/10.1016/j.applthermaleng.2018.12.045

Venegas, T., Vasco, D. A., García, F. E., & Salinas, C. (2018). Effect of the insulation level on the thermal response of a PCM-modified envelope of a dwelling in Chile. Applied Thermal Engineering, 141, 79–89. https://doi.org/https://doi.org/10.1016/j.applthermaleng.2018.05.083

Vicens, G. D. I., Castro, S. S., Vicente, R., De Ignacio Vivens, G., Soutullo Castro, S., López-Zaldivar, O., … Verdú Vázquez, A. (2018). Sobre inercia térmica y aislamiento de viviendas en clima cálido-húmedo. On thermal inertia and insulation of buildings in warm-humid climate. ADE, 4(1), 14. https://doi.org/10.20868/ade.2018.3730

Wei, S., Jones, R., & De Wilde, P. (2014). Driving factors for occupant-controlled space heating in residential buildings. Energy and Buildings, 70, 36–44. https://doi.org/10.1016/j.enbuild.2013.11.001

Wong, I. L., Krüger, E., Loper, A. C. M., & Mori, F. K. (2019). Classification and energy analysis of bank building stock: A case study in Curitiba, Brazil. Journal of Building Engineering, 23, 259–269. https://doi.org/https://doi.org/10.1016/j.jobe.2019.02.003

Xamán, J., Rodriguez-Ake, A., Zavala-Guillén, I., Hernández-Pérez, I., Arce, J., & Sauceda, D. (2020). Thermal performance analysis of a roof with a PCM-layer under Mexican weather conditions. Renewable Energy, 149, 773–785. https://doi.org/https://doi.org/10.1016/j.renene.2019.12.084

Zavadzki, S., Kleina, M., Drozda, F., & Marques, M. (2020). for Stock Market Prediction : A Systematic Review. 18(4), 744–755.

Zuniga-Garcia, M. A., Santamaría-Bonfil, G., Arroyo-Figueroa, G., & Batres, R. (2019). Prediction interval adjustment for load-forecasting using machine learning. Applied Sciences (Switzerland), 9(24), 1–20. https://doi.org/10.3390/app9245269

Descargas

Publicado

2020-12-01

Número

Sección

Artículos de Investigación y Artículos de Revisión

Cómo citar

Mejoras al desempeño energético en edificaciones abordando los desafíos actuales del lado de la demanda: Una revisión de contribuciones de Latinoamérica . (2020). Novasinergia, ISSN 2631-2654, 3(2), 124-142. https://doi.org/10.37135/ns.01.06.10