DIMETILGLIOXIMA: un reactivo químico con 100 años de historia

  • Ricardo R. Contreras Laboratorio de Organometálicos, Departamento de Química, Facultad de Ciencias, Universidad de Los Andes
  • Luis M. Barrientos-Contreras Laboratorio de Organometálicos, Departamento de Química, Facultad de Ciencias, Universidad de Los Andes
  • Jerica M. Montilla-Suárez Laboratorio de Organometálicos, Departamento de Química, Facultad de Ciencias, Universidad de Los Andes
  • Rubén A. Sánchez-Vargas Laboratorio de Organometálicos, Departamento de Química, Facultad de Ciencias, Universidad de Los Andes
  • Luigi Manfredy Laboratorio de Electroquímica, Departamento de Química, Facultad de Ciencias, Universidad de Los Andes
Palabras clave: Dimetilglioxima, dimetilglioximato, quelato, metales de transición, química de coordinación, química analítica

Resumen

La dimetilglioxima (diacetildioxima o butano-2,3-dioxima), dmgH2, es uno de los quelatos de uso más extendido en química de coordinación y analítica. La reacción de formación del bis(dimetilglioximato) de níquel(II), reportada por Lev A. Chugaev (Tschugaeff) en 1905, constituye una de las primeras pruebas específicas para la identificación cualitativa de un metal de transición. Desde entonces, y por más de un siglo, la dimetilglioxima adquirió importancia como un notable agente quelante, y sus compuestos complejos se han venido utilizando en áreas como la química inorgánica, catálisis, electroquímica, ciencia de materiales, entre otras. En este artículo, presentamos una breve revisión de la dimetilglioxima, los dimetilglioximatos metálicos y algunas de sus aplicaciones más representativas. La revisión indica que, además de su gran éxito como reactivo analítico para la determinación de metales, existen importantes estudios de los dimetilglioximatos metálicos como catalizadores de diversas reacciones, destacando la producción de hidrógeno molecular, una reacción de importancia por su impacto en la economía del hidrógeno y la química verde.

Descargas

La descarga de datos todavía no está disponible.

Citas

- Abeles, R. H. & Dolphin, D. (1976). The vitamin B12 coenzyme. Accounts of Chemical Research, 9(3): 114-120.

- American Society for Testing and Materials. (2016). E1473-16, Standard Test Methods for Chemical Analysis of Nickel, Cobalt and High-Temperature Alloys. West, Conshohocken, Pensilvania: ASTM International.

- Andrews, J. & Jelley, N. A. (2013). Energy Science: Principles, Technologies, and Impacts (Second edition). Oxford: Oxford University Press.

- Ashcroft, M. R., Bury, A., Cooksey, C. J., Davies, A. G., Gupta, B. D., Johnson, M. D. & Morris, H. (1980). Homolytic displacement at carbon. Journal of Organometallic Chemistry, 195(1): 89-104.

- Bacchi, M., Berggren, G., Niklas, J., Veinberg, E., Mara, M. W., Shelby, M. L., Poluektov, O. G., Chen, L. X., Tiede, D. M., Cavazza, Ch., Field, M. J., Fontecave, M. & Artero, V. (2014). Cobaloxime-Based Artificial Hydrogenases. Inorganic Chemistry, 53(15): 8071-8082.

- Baffert, C., Artero, V. & Fontecave, M. (2007). Cobaloximes as Functional Models for Hydrogenases. 2. Proton Electroreduction Catalyzed by Difluoroborylbis(dimethylglyoximato)cobalt(II) Complexes in Organic Media. Inorganic Chemistry, 46(5): 1817-1824.

- Bakac, A., Brynildson, M. E. & Espenson, J. H. (1986). Characterization of the structure, properties, and reactivity of a cobalt(II) macrocyclic complex. Inorganic Chemistry, 25(23): 4108-4114.

- Bakac, A. & Espenson, J. H. (1984). Unimolecular and bimolecular homolytic reactions of organochromium and organocobalt complexes. Kinetics and equilibria. Journal of the American Chemical Society, 106(18): 5197-5202.

- Baldwin, R. P., Christensen, J. K. & Kryger, L. (1986). Voltammetric Determination of Traces of Nickel(II) at a Chemically Modified Electrode Based on Dimethylglyoxime-Containing Carbon Paste. Analytical Chemistry, 58(8): 1790-1798.

- Ball, M. & Wietschel, M. (2009). The Hydrogen Economy: Opportunities and Challenges. Cambridge: Cambridge University Press.

- Bard, A. J. & Zoski, C. G. (2017). Electroanalytical chemistry. Volume 27: a series of advances. Boca Raton, Florida: CRC Press.

- Barefield, E. K. (2010). Coordination chemistry of N-tetraalkylated cyclam ligands - A status report. Coordination Chemistry Review, 254: 1607-1627.

- Basolo, F. & Johnson R. (1964). Coordination Chemistry. Menlo Park, California: WA Benjamin.

- Baxter, L. A. M., Bobrowski, A., Bond, A. M., Heath, G. A., Paul, R. L., Mrzljak, R. & Zarebski, J. (1998). Electrochemical and Spectroscopic Investigation of the Reduction of Dimethylglyoxime at Mercury Electrodes in the Presence of Cobalt and Nickel. Analytical Chemistry, 70(7): 1312-1323.

- Bickerdike, E. L. & Willard, H. H. (1952). Dimethylglyoxime for Determination of Nickel in Large Amounts. Analytical. Chemistry, 24(6): 1026-1026.

- Bigotto, A., Costa, G., Galasso V. & de Alti, G. (1970). Infra-red spectra and normal vibrations of bis-dimethylglyoximates of transition metals. Spectrochimica Acta A, 26A: 1939-1949.

- Bougherra, H., Berradj, O., Adkhis, A. & Amrouche, T. (2018). Synthesis, characterization, electrochemical and biological activities of mixed ligand copper(II) complexes with dimethylglyoxime and amino acids. Journal of Molecular Structure, 1173: 280-290.

- Branchaud, B. P. & Choi, Y. L. (1988). Cobaloxime-mediated radical alkyl-heteroaromatic substitution. Journal of Organic Chemistry, 53(19): 4638-4641.

- Bresciani-Pahora, N., Forcolina, M., Marzilli, L.G., Randaccio, L., Summers, M. F. & Toscano, P. J. (1985). Organocobalt B12 models: axial ligand effects on the structural and coordination chemistry of cobaloximes. Coordination Chemistry Reviews, 63: 1-125.

- Chen, J. & Sit, P. H.-L. (2019). Thermodynamic Properties of Hydrogen-Producing Cobaloxime Catalysts: A Density Functional Theory Analysis. ACS Omega, 4 (1): 582–592

- Chen, J. & Sit, P. H.-L. (2017). Density Functional Theory and Car−Parrinello Molecular Dynamics Study of the Hydrogen-Producing Mechanism of the Co(dmgBF2)2 and Co(dmgH)2 Cobaloxime Complexes in Acetonitrile−Water Solvent. Journal of Physical Chemistry A, 121: 3515−3525.

- Connolly, P. & Espenson, J. H. (1986). Cobalt-Catalyzed Evolution of Molecular Hydrogen. Inorganic Chemistry, 25(16): 2684-2688.

- Contreras, R. R. & Rojas-Pérez, Y. (2018). Ligandos tipo salen en química de coordinación. Una breve revisión. Revista Ciencia e Ingeniería, 39(3): 307-314.

- Contreras, R. R. (2017). Química Verde. Caracas: Fondo Editorial OPSU.

- Costa, G., Mestroni, G. & de Savorgnani, E. (1969). Vitamin B12 model compounds - cobalt chelates of bis(diacetylmonoxime -imino)propane 1–3. Inorganica Chimica Acta, 3: 323-328.

- Cotton, F. A. & Wilkinson, G. (1988). Advanced inorganic chemistry: a comprehensive text (5th ed). New York: John Wiley.

- Craven, B. M., Chang, C. H. & Ghosh, D. (1979). Dimethylglyoxime: a restricted X-ray charge-density refinement. Acta Crystallographica Section B, 35(12), 2962–2966.

- Dempsey, J. L., Brunschwig, B. S., Winkler, J. R. & Gray, H. B. (2009). Hydrogen Evolution Catalyzed by Cobaloximes. Accounts of Chemical Research, 42(12): 1995-2004.

- Dulski, T. R. (1996). A manual for the chemical analysis of metals. West, Conshohocken, Pensilvania: ASTM International.

- Dunaj-Jurčo, M., Kettmann, V., Steinborn, D. & Ludwig, M. (1994). Bis(dimethylglyoximato-N,N’)(triphenylphosphine-P)vinylrhodium(III). Acta Crystallographica Section C Crystal Structure Communications, 50(9), 1427-1430.

- Elias, H. (1999). Kinetics and mechanism of metal complex formation with N4-donor macrocycles of the cyclam type. Coordination Chemistry Reviews, 187(1): 37-73.

- Fringuelli, F. & Taticchi, A. (2002). The Diels Alder reaction: selected practical methods. Chichester, New York: Wiley.

- Gage, J. L. & Branchaud, B. P. (1996). Exploratory Studies on Reactions of Cobaloxime π-Cations with C-Nucleophiles:  Irreversible Alkene Decomplexation versus Nucleophilic Capture. Journal of Organic Chemistry, 61 (3): 831-837.

- Gilchrist, T. L. (1992). Heterocyclic chemistry (2nd ed). Harlow, Essex, England: Longman Scientific & Technical & Wiley.

- Godycki, L. E. & Rundle, R. E. (1953). The structure of nickel dimethylglyoxime. Acta Crystallographica, 6(6), 487-495.

- Hall, J. L., Gibson J. A. Jr., Phillips, H. O. & Wilkinson P. R. (1955). Conductometric Titrations with Dimethylglyoxime. Analytical Chemistry, 27(9): 1504-1505.

- Hancock, R. D. (1992). Chelate ring size and metal ion selection. The basis of selectivity for metal ions in open-chain ligands and macrocycles. Journal of Chemical Education, 69(8): 615-621.

- Jacques, P. A., Artero, V., Pécaut, J. & Fontecave, M. (2009). Cobalt and Nickel Diimine-Dioxime Complexes as Molecular Electrocatalysts for Hydrogen Evolution with Low Overvoltages. Proceedings of the National Academy of Sciences of the United States of America, 106(49), 20627−20632.

- Jameson, D. L., Grzybowski, J. J., Hammels, D. E., Castellano, R. K., Hoke, M. E., Freed, K. & Shoemaker, W.J. (1998). Synthesis of Some “Cobaloxime” Derivatives: A Demonstration of “Umpolung” in the Reactivity of an Organometallic Complex. Journal of Chemical Education, 75(4): 447-450.

- Jiang, P. N. (2006). Electroanalytical chemistry research developments. Hauppauge, New York: Nova Science Publishers.

- Kauffman, G. B. (1973). A Russian Pioneer in Platinum Metals Research The Life and Work of Lev Aleksandrovich Chugaev. Platinum Metals Review, 17: 144-148.

- Kauffman, G. B. (2011). Coordination Chemistry: History. Encyclopedia of Inorganic and Bioinorganic Chemistry. 2011: 1-24.

- Kauffman, G. B. (1963). Terpenes to Platinum: The Chemical Career of Lev Aleksandrovich Chugaev. Journal Chemical Education, 40(12): 656-665.

- Kettmann, V., Dunaj-Jurčo, M., Steinborn, D. & Ludwig, M. (1994). Bis(dimethylglyoximato-N,N’)(ethyl)(triphenylphosphine)rhodium(III). Acta Crystallographica Section C, 50(8), 1239-1241.

- Kettmann, V., Dunaj-Jurco, M., Steinborn, D. & Ludwig, M. (1996). tert-Butylbis(dimethylglyoximato-N,N’)(triphenylphosphine-P)rhodium. Acta Crystallographica Section C, 52(6), 1399-1401.

- Kolthoff, I. M. & Elving, P. J. (1971). Treatise on analytical chemistry. New York: Wiley-Interscience.

- Koman, M., Máriássy, M. & Ondrejovič, G. (1990). Structure of bis(dimethylglyoximato-N,N’)(thiourea-S)copper(II). Acta Crystallographica Section C, 46(4), 561–562.

- Lee, J. D. (1977). A New Concise Inorganic Chemistry. London, Van Nostrand Reinhold.

- Li, G., Estes, D. P., Norton, J. R., Ruccolo, S., Sattler, A. & Sattler, W. (2014). Dihydrogen Activation by Cobaloximes with Various Axial Ligands Inorganic Chemistry, 53(19): 10743-10747.

- Li, G., Han, A., Pulling, M. E., Estes, D. P. & Norton, J. R. (2012). Evidence for Formation of a Co–H Bond from (H2O)2Co(dmgBF2)2 under H2: Application to Radical Cyclizations. Journal of the American Chemical Society, 134(36), 14662-14665.

- Lin, Y.-W. (2017). Rational design of metalloenzymes: From single to multiple active sites. Coordination Chemistry Reviews, 336: 1-27.

- Liu, Y.-Q. (2007). Aqua(dimethylglyoxime-κ2N,N′)(3,5-dinitro-2-oxidobenzoato-κ2O,O′)nickel(II). Acta Crystallographica Section E, 63(12), m3002–m3002.

- Martin, J. D., Hogan, P., Abboud, K. A. & Dahmen K.-H. (1998). Variations on Nickel Complexes of the vic-Dioximes: An Understanding of Factors Affecting Volatility toward Improved Precursors for Metal-Organic Chemical Vapor Deposition of Nickel. Chemistry of Materials, 10(9): 2525-2532.

- Matano, Y. (2017). Synthesis of Aza-, Oxa-, and Thiaporphyrins and Related Compounds. Chemical Review, 117(4): 3138-3191.

- McCauley, K. M., Wilson, S. R. & van der Donk, W. A. (2002). Synthesis and Characterization of Chlorinated Alkenylcobaloximes To Probe the Mechanism of Vitamin B12-Catalyzed Dechlorination of Priority Pollutants. Inorganic Chemistry, 41(2), 393-404.

- Meera, P., Amutha Selvi, M., Jothi, P. & Dayalan, A. (2011). Aquabromidobis(dimethylglyoximato)cobalt(III). Acta Crystallographica Section E, 67(4), m442–m443.

- Merritt, L. L. & Lanterman, E. (1952). The crystal structure of dimethylglyoxime. Acta Crystallographica, 5(6), 811-817.

- Mitchell, A. M. & Mellon, M. G. (1945) Colorimetric Determination of Nickel with Dimethylglyoxime. Industrial & Engineering Chemistry Analytical Edition, 1945, 17(6), 380-382.

- Molnar, A. (editor of compilation.). (2013). EDTA: synthesis, uses, and environmental concerns. Hauppauge - New York: Nova Science Publishers.

- Murray, R. W., Ewing, A. G. & Durst, R. A. (1987). Chemically Modified Electrodes Molecular Design for Electroanalysis. Analytical. Chemistry, 59(5): 379A-390A.

- Nishikubo, Y. & Branchaud, B. P. (1999). Cobaloxime π-Cation Steric and Stereoelectronic Effects:  The Amazing Effect of a Single Methyl Group Adjacent to the Site of Reaction. Journal of the American Chemical Society, 121(47): 10924-10927

- Orel, B., Penko, M. & Hadzi, D. (1980). Infrared and resonance raman enhaced Raman spectra of some metal vic-dioximes with short hydrogen bonds. Spectrochimica Acta, 36A: 859-864.

- Pang, I. & Stynes, D. (1977). Kinetics of reversible blinding of carbon monoxide and benzil isocyanide to ferrous dimethylglyoxime complexes. Inorganic Chemistry, 16(3): 590-594.

- Parish, R. V. (1977). The Metallic Elements. London, Longman.

- Pickin, K. A., Day, C. S., Wright, M. W. & Welker, M. E. (2003). trans-Bis(dimethylglyoximato-κ2N,N′)(1-hexenyl)(pyridine-κN)cobalt(III): a cobaloxime-substituted terminal alkene that rapidly isomerizes to a cobaloxime-substituted internal alkenyl complex. Acta Crystallographica Section C, 59(5), m193–m195.

- Potocnák, I., Dunaj-Jurco, M., Ludwig, M. & Steinborn, D. (1995). Bis(dimethylglyoximato-N,N’)(methyl)(triphenylphosphine)rhodium(III). Acta Crystallographica Section C, 51(10), 1999-2001.

- Přibil, R. & Chalmers, R. A. (2014). Applied Complexometry: Pergamon Series in Analytical Chemistry. Kent: Elsevier Science.

- Probst, B., Rodenberg, A., Guttentag, M., Hamm, P. & Alberto, R. (2010). A Highly Stable Rhenium−Cobalt System for Photocatalytic H2 Production: Unraveling the Performance-Limiting Steps. Inorganic Chemistry, 49(14): 6453-6460.

- Ramesh, P., SubbiahPandi, A., Jothi, P., Revathi, C. & Dayalan, A. (2008). Dichlorido(dimethylglyoximato-κ2N,N′)(dimethylglyoxime-κ2N,N′)cobalt(III). Acta Crystallographica Section E, 64(2), m300–m301.

- Razavet, M., Artero, V. & Fontecave, M. (2005). Proton Electroreduction Catalyzed by Cobaloximes: Functional Models for Hydrogenases. Inorganic Chemistry, 44(13): 4786-4795.

- Richardson, M. B. & Welker, M. E. (1997). Transition-Metal-Mediated Exo-Selective Diels-Alder Reactions for the Preparation of Octalones with Unusual Stereochemistries. Reactions of 2-Cobaloxime-Substituted 1,3-Dienes with Cyclohexenones in Thermal and Lewis Acid-Catalyzed [4+2] Cycloadditions. Journal of Organic Chemistry, 62(5): 1299-1304.

- Rodenberg, A., Orazietti, M., Probst, B., Bachmann, C., Alberto, R., Baldridge, K. K. & Hamm, P. (2014). Mechanism of Photocatalytic Hydrogen Generation by a Polypyridyl-Based Cobalt Catalyst in Aqueous Solution. Inorganic Chemistry, 54(2): 646–657.

- Rountree, E. S., Martin, D. J., McCarthy, B. D. & Dempsey, J. L. (2016). Linear Free Energy Relationships in the Hydrogen Evolution Reaction: Kinetic Analysis of a Cobaloxime Catalyst. ACS Catalysis, 6(5): 3326-3335.

- Rovira, C., Kunc, K. & Parrinello, M. (2002). Protonation State of the Equatorial Ligands and Dynamics of the OH•••O Units in a Cobaloxime Biomimetic. Inorganic Chemistry, 41(18): 4810-4814

- Rutherford, P. E. & Thornton, D. A. (1978). Application of isotopic labelling to band assignments in the i.r. spectra or cobaloximes with axially-coordinated pyridine and methyl or halide ligands. Spectrochimica Acta, 35A: 711-714.

- Sakhawat Hussain, M., Salinas, B. E. V. & Schlemper, E. O. (1979). Three-dimensional determinations of the crystal structures of bis(dimethylglyoximato)palladium(II) and bis(dimethylglyoximato)platinum(II). Acta Crystallographica Section B, 35(3), 628-633.

- Sastri, V. S. (2003). Modern aspects of rare earths and their complexes (1st ed). Amsterdam:Elsevier.

- Schrauzer, G. N. & Windgassen, R. J. (1966). Alkylcobaloximes and Their Relation to Alkylcobalamins. Journal of the American Chemical Society, 88(16), 3738–3743.

- Schurko, R. W. & Wasylishen, R. E. (2000). Nitrogen-15 NMR Study of Solid Cobaloximes Containing 15N-Labeled Pyridine and Aniline. Journal of Physical Chemistry A, 104: 3410-3420.

- Semon, W. L. & Damerell, V. R. (1943). Dimethylglyoxime. Organic Syntheses Collective, 2: 204.

- Sivaramakrishna, A., Clayton, H. S., Kaschula, C. & Moss, J. R. (2007). Transition metal-alkenyl complexes [M–(CH2)nCH=CH2, n≥2]: Synthesis, structure, reactivity and applications. Coordination Chemistry Reviews, 251(2007): 1294-1308.

- Slade, R. M. & Branchaud, B. P. (1998). Cross Coupling of Alkyl Cobaloximes with Maleic Anhydrides. Basic Studies and Applications to the Synthesis of Chaetomellic Acid A Anhydride and C-Glycosyl Maleic Anhydrides. Journal of Organic Chemistry, 63(11): 3544-3549.

- Solans, X., Font-Bardia, M., López, C. & Alvarez, S. (1996). Anhydrous trans-(Aniline)chlorobis(dimethylglyoximato)cobalt(III). Acta Crystallographica Section C, 52(1), 63-66.

- Stokes, H. L. & Welker, M. E. (1996). Reactions of Cobaloxime Anions and/or Hydrides with Enynes as a New, General Route to 1,3- and 1,2-Dienylcobaloxime Complexes. Organometallics, 15(11): 2624-2632.

- Tamaru, Y., Kagotani, M., Suzuki, R. & Yoshida Z.-I. (1981). Regio- and Stereoselective Anti-Markovnikov Hydrosulfonylation of Conjugated Dienes via r-Allylpalladium Complex: Synthesis of (Z)-Δ3-Alkenyl Sulfones. Journal of Organic Chemistry, 46(16): 3374-3376.

- Taqui Khan, M. M., Venkatasubramanian, K., Abdi, S. H. R., Bhadbhade, M. M. & Tyagi, B. (1992). Structure of tris(dimethylglyoxime)ruthenium(II) dichloride. Acta Crystallographica Section C, 48(8), 1402–1405.

- Torrance, K. & Gatford, C. (1985). Differential pulse stripping voltammetry for the determination of nickel and cobalt in simulated pwr coolant. Talanta, 32(4): 273-278.

- Tschugaeff, L. (1905). Über ein neues, empfindliches Reagens auf Nickel. Berichte der deutschen chemischen Gesellschaft, 38(3): 2520-2522.

- Tschugaeff, L. (1906). Ueber complexe Verbindungen organischer Imide: Succinimidnickel-Derivate. Berichte der deutschen chemischen Gesellschaft, 39(3): 3190-3201.

- Valcárcel, M. (2000). Principles of analytical chemistry: a textbook. Berlin: Springer.

- Voet D. & Voet J. G. (1992). Bioquímica. Barcelona, España: Ediciones Omega.

- West, T. S. (1969). Complexometry with EDTA and related reagents (3rd ed.). Poole - Dorset: BDH Chemicals.

- Williams, D. E., Wohlauer, G. & Rundle, R. E. (1959). Crystal structures of nickel and palladium dimethylglyoximes. Journal of the American Chemical Society, 81(3): 755-756.

- Willie, S. N. (2003). The determination of trace elements in water. Sample Preparation for Trace Element Analysis, 2003: 857–902.

- Wright, M. W. & Welker, M. E. (1996). Transition Metal Mediated Exo Selective Diels-Alder Reactions: Preparation of 2-Cobalt-Substituted 1,3-Dienes Containing C2 Symmetric 2,3
Publicado
2019-06-06
Cómo citar
Contreras, R., Barrientos-Contreras, L., Montilla-Suárez, J., Sánchez-Vargas, R., & Manfredy, L. (2019). DIMETILGLIOXIMA: un reactivo químico con 100 años de historia. NOVASINERGIA, 2(1), 104-113. Recuperado a partir de http://novasinergia.unach.edu.ec/index.php/novasinergia/article/view/84
Sección
Artículos