Controlabilidad de ecuaciones de evolución semilineales con impulsos y retardos

Autores/as

DOI:

https://doi.org/10.37135/ns.01.05.04

Palabras clave:

Controlabilidad, ecuaciones de evolución semilineales, ecuación de onda semilineal, semigrupos fuertemente continuos

Resumen

Para muchos sistemas de control en la vida real, impulsos y retardos son fenómenos intrínsecos que no modifican su controlabilidad. Así conjeturamos que, bajo ciertas condiciones, perturbaciones del sistema causadas por cambios abruptos y retardos no afectan ciertas propiedades como la controlabilidad. A este respecto, mostramos que bajo ciertas condiciones, los impulsos y retardos como perturbaciones no destruyen la controlabilidad de sistemas gobernados por ecuaciones de evolución. Como aplicación consideramos una ecuación de ondas semilineal con impulsos y retardos.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Bashirov, A. E., & Ghahramanlou, N. (2013). On partial complete controllability of semilinear systems. Applied Analysis, 2013, 1–8. Article ID 52105.

Bashirov, A. E., & Ghahramanlou, N. (2014). On partial approximate controllability of semilinear systems. Cogent Engineering, 1(1), 965947.

Bashirov, A. E., Mahmudov, N., Semi, N., & Etikan, H. (2007). On partial controllability concepts. International Journal of Control, 80(1), 1–7.

Carrasco, A., & Leiva, H. (2007). Variation of constants formula for functional partial parabolic equations. Electronic Journal of Differential Equations, 2007(130), 1–20.

Chalishajar, D. N. (2011). Controllability of impulsive partial neutral funcional differential equation with infinite delay. International Journal of Mathematical Analysis, 5(8), 369–380.

Chen, L., & Li, G. (2010). Approximate controllability of impulsive differential equations with nonlocal conditions. International Journal of Nonlinear Science, 10(2010), 438–446.

Chen, S., & Triggiani, R. (1989). Proof of extensions of two conjectures on structural damping for elastic systems. Pacific Journal of Mathematics, 136(1), 15–55.

Curtain, R., & Pritchard, A. (2010). Infinite Dimensional Linear Systems, volume 10. Lecture Notes in Control and Information Sciences.

Curtain, R., & Zwart, H. (1995). An introduction to infinite dimensional linear systems theory. In Text in Applied Mathematics. Springer-Verlag: Berling.

Larez, H., Leiva, H., & Uzcategui, J. (2011). Controllability of block diagonal system and applications. International Journal of Systems, Control and Communications, 3(1).

Leiva, H. (2003). A lemma on c0􀀀semigroups and applications. Quaestiones Mathematicae, 26(3), 247–265.

Leiva, H. (2015a). Approximate controllability of semilinear heat equation with impulses and delay on the state. Nonautonomous Dynamical Systems, 2(1), 52–62.

Leiva, H. (2015b). Controllability of semilinear impulsive evolution equations. Applied Analysis, 2015. Article ID 797439, 7 pages.

Leiva, H. (2015c). Controllability of semilinear impulsive nonautonomous systems. International Journal of Control, 88(3), 585–592.

Leiva, H., & Merentes, N. (2010). Controllability of second-order equations in l2w. Mathematical Problems in Engineering, 2010. Article ID 147195, 11 pages.

Leiva, H., & Merentes, N. (2015). Approximate controllability of the impulsive semilinear heat equation. Journal of Mathematics and Applications, 38, 85–104.

Leiva, H., Merentes, N., & Sanchez, J. (2013). A characterization of semilinear dense range operators and applications. Applied Analysis, 2013. Article ID 729093, 11 pages.

Radhakrishnan, B., & Blachandran, K. (2012). Controllability results for semilinear impulsive integrodifferential evolution systems with nonlocal conditions. Journal of Control Theory Applications, 10(1), 28–34.

Selvi, S., & Arjunan, M. (2012). Controllability results for impulsive differential systems with finite delay. Journal of Nonlinear Science and Applications, 5(3), 206–219.

Publicado

2020-06-01

Número

Sección

Artículos de Investigación y Artículos de Revisión

Cómo citar

Controlabilidad de ecuaciones de evolución semilineales con impulsos y retardos. (2020). Novasinergia, ISSN 2631-2654, 3(1), 37-44. https://doi.org/10.37135/ns.01.05.04