Controlabilidad aproximada de sistemas de control semilineales no autónomos con impulsos no instantáneos, retardo no acotado y condiciones no locales
DOI:
https://doi.org/10.37135/ns.01.09.01Palabras clave:
Condiciones no locales , controlabilidad aproximada, ecuaciones semilineales retardadas con retardo infinito, impulsos no instantáneos, técnica de Bashirov et. at, teoría axiomática de Hale-KatoResumen
En este trabajo estudiamos la controlabilidad aproximada de un sistema de control con retardo no acotado, impulso no instantáneo y condiciones no locales. Estos resultados prueban una vez más que la controlabilidad de un sistema lineal se preserva si consideramos los impulsos, las condiciones no locales y los retardos como perturbaciones del mismo, lo cual es muy natural en los problemas de la vida real, nunca los puntos críticos de una ecuación diferencial corresponden exactamente el punto crítico del modelo que representa, lo mismo ocurre con los impulsos, el retardo y las condiciones no locales; son fenómenos intrínsecos al problema real, que muchas veces no son tomados en cuenta al momento de realizar la modelación matemática. Para lograr nuestro resultado, utilizaremos una técnica desarrollada por A. Bashirov et al., que no utiliza teoremas de punto fijo. Por otro lado, como el retardo es infinito, consideramos un espacio de fase que satisface la teoría axiomática propuesta por Hale-Kato para estudiar ecuaciones diferenciales retardadas con retardo no acotado.
Descargas
Referencias
Abbas, S., Arifi, N. A. L., Benchohra, M., & Graef, J. (2020). Periodic mild solutions of infinite delay evolution equations with non-instantaneous impulses. Journal of Nonlinear Functional Analysis, 2020, 1–11. https://doi.org/10.23952/jnfa.2020.7
Ayala-Bolagay, M. J., Leiva, H., & Tallana-Chimarro, D. (2020). Existence of solutions for retarded equations with infinite delay, impulses, and nonlocal conditions. Journal of Mathematical Control Science and Applications, 6(1), 43–61. Recuperado de https://www.mukpublications.com/resources/jmcsa_v6-6-1-4_Dr_hug0.pdf
Bashirov, A. E., & Ghahramanlou, N. (2014). On partial approximate controllability of semilinear systems. Cogent Engineering, 1(1).
https://doi.org/10.1080/23311916.2014.965947
Bashirov, A. E., & Jneid, M. (2013). On partial complete controllability of semilinear systems. Abstract and Applied Analysis, 2013. https://doi.org/10.1155/2013/521052
Bashirov, A. E., Mahmudov, N., Şemi, N., & Etikan, H. (2007). Partial controllability concepts. International Journal of Control, 80(1), 1–7. https://doi.org/10.1080/00207170600885489
Byszewski, L., & Lakshmikantham, V. (1991). Theorem about the Existence and Uniqueness of a Solution of a Nonloca Abstract Cauchy Problem in a Banach Space. Applicable Analysis, 40(1), 11–19. https://doi.org/http://dx.doi.org/10.1080/00036819008839989
Byszewski, L. (1990). Existence and uniqueness of solutions of nonlocal problems for hiperbolic equation uxt=F(x,t,u,ux). Journal of Applied Mathematics and Stochastic Analysis, 3(3), 163–168. https://doi.org/10.1155/S1048953390000156
Byszewski, Ludwik. (1991). Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem. Journal of Mathematical Analysis and Applications, 162(2), 494–505. https://doi.org/10.1016/0022-247X(91)90164-U
Chabrowski, J. (1984). On non-local problems for parabolic equations. Nagoya Mathematical Journal, 93, 109–131. Recuperado de https://www.cambridge.org/core/services/aop-cambridge-core/content/view/CDF2E7DACF20061D6282318971E2AA54/S0027763000020705a.pdf/mordellweil_group_of_rank_8_and_a_subgroup_of_finite_index.pdf
Hale, J. K., & Kato, J. (1978). Phase space for retarded equations with infinite delay. Funkcialaj Ekvacioj, 21, 11–41. Recuperado de
http://fe.math.kobe-u.ac.jp/FE/FE_pdf_with_bookmark/FE21-30-en_KML/fe21-011-041/fe21-011-041.pdf
Hino, Y., Murakami, S., & Naito, T. (2013). Functional differential equations with infinite delay. In A. D. Heidelberg, B. E. Zurich, & F. T. Groningen (Eds.), Lecture Notes in Mathematics 1473 (Vol. 79). Berlin: Springer-Verlag. https://doi.org/10.1016/j.na.2012.11.018
Karakostas, G. L. (2003). An extension of Krasnoselskii’s fixed point theorem for contractions and compact mappings. Topological Methods in Nonlinear Analysis, 22(1), 181–191. https://doi.org/10.12775/tmna.2003.035
Lakshmikantham, V., Bainov, D. D., & Simeonov, P. S. (1989). Theory of Impulsive Differential Equations. Singapore: World Scientific. https://doi.org/10.1142/0906
Lee, E. B., & Markus, L. (1986). Foundations of Optimal Control Theory. Malaba, Florida: Robert E. Krieger Publishing Company.
Leiva, H., Cabada, D., & Gallo, R. (2020). Roughness of the Controllability for Time Varying Systems under the Influence of Impulses, Delay, and Nonlocal Conditions. Nonautonomous Dynamical Systems, 7(1), 126–139. https://doi.org/10.1515/msds-2020-0106
Leiva, H., & Sundar, P. (2017). Existence of Solutions for a Class of Semilinear Evolution Equations With Impulses and Delays. Journal of Nonlinear Evolution Equations and Applications, 2017(7), 95–108. Recuperado de
http://www.jneea.com/sites/jneea.com/files/JNEEA-vol.2017-no.7.pdf
Leiva, H., & Zambrano, H. (1999). Rank condition for the controllability of a linear time-varying system. International Journal of Control, 72(10), 929–931. https://doi.org/http://dx.doi.org/10.1080/002071799220669
Liu, J. H. (2000). Periodic solutions of infinite delay evolution equations. Journal of Mathematical Analysis and Applications, 247(2), 627–644. https://doi.org/10.1006/jmaa.2000.6896
Liu, J., Naito, T., & Van Minh, N. (2003). Bounded and periodic solutions of infinite delay evolution equations. Journal of Mathematical Analysis and Applications, 286(2), 705–712. https://doi.org/10.1016/S0022-247X(03)00512-2
Selvi, S., & Arjunan, M. M. (2012). Controllability results for impulsive differential systems with finite delay. Journal of Nonlinear Sciences and Applications, 05(03), 206–219. https://doi.org/http://dx.doi.org/10.22436/jnsa.005.03.05
Shin, J. S. (1987). Global convergence of successive approximations of solutions for functional differential equations with infinite delay. Tohoku Mathematical Journal, 39(4), 557–574. Recuperado de
https://projecteuclid.org/accountAjax/Download?downloadType=journal article&urlId=10.2748%2Ftmj%2F1178228243&isResultClick=True
Shin, J. S. (1987). On the uniqueness of solutions for functional differential equations with infinite delay. Funkcialaj Ekvacioj, 30, 225–236. Recuperado de http://fe.math.kobe-u.ac.jp/FE/FE_pdf_with_bookmark/FE21-30-en_KML/fe30-225-236/fe30-225-236.pdf
Vrabie, I. I. (2015). Delay evolution equations with mixed nonlocal plus local initial conditions. Communications in Contemporary Mathematics, 17(2), 1–22. https://doi.org/https://doi.org/10.1142/S0219199713500351