Approximate controllability of non-instantaneous impulsive semilinear time-dependent control systems with unbounded delay and non-local condition

Authors

DOI:

https://doi.org/10.37135/ns.01.09.01

Keywords:

Approximate controllability, Bashirov et. at technique, Hale-Kato axiomatic theory, non-instantaneous impulses, non-local conditions, semilinear retarded equations with infinite delay

Abstract

In this work, we study the approximate controllability of a control system with unbounded delay, non-instantaneous impulse, and non-local conditions. These results prove once again that the controllability of a linear system is preserved if we consider the impulses, the non-local conditions and the delays as disturbances of it, which is very natural in real life problems, never the critical points of a differential equation is exactly the critical point of the model that it represents, the same happens with the impulses, the delay and non-local conditions; they are intrinsic phenomena to the real problem, that many times they are not taken into account at the moment of carrying out the mathematical modeling. To achieve our result, we will use a technique developed by A. Bashirov et al., which does not use fixed point theorems. On the other hand, as the delay is infinite, we consider a phase space that satisfies the axiomatic theory propose by Hale-Kato to study retarded differential equations with unbounded delay.

Downloads

Download data is not yet available.

References

Abbas, S., Arifi, N. A. L., Benchohra, M., & Graef, J. (2020). Periodic mild solutions of infinite delay evolution equations with non-instantaneous impulses. Journal of Nonlinear Functional Analysis, 2020, 1–11. https://doi.org/10.23952/jnfa.2020.7

Ayala-Bolagay, M. J., Leiva, H., & Tallana-Chimarro, D. (2020). Existence of solutions for retarded equations with infinite delay, impulses, and nonlocal conditions. Journal of Mathematical Control Science and Applications, 6(1), 43–61. Recuperado de https://www.mukpublications.com/resources/jmcsa_v6-6-1-4_Dr_hug0.pdf

Bashirov, A. E., & Ghahramanlou, N. (2014). On partial approximate controllability of semilinear systems. Cogent Engineering, 1(1).

https://doi.org/10.1080/23311916.2014.965947

Bashirov, A. E., & Jneid, M. (2013). On partial complete controllability of semilinear systems. Abstract and Applied Analysis, 2013. https://doi.org/10.1155/2013/521052

Bashirov, A. E., Mahmudov, N., Şemi, N., & Etikan, H. (2007). Partial controllability concepts. International Journal of Control, 80(1), 1–7. https://doi.org/10.1080/00207170600885489

Byszewski, L., & Lakshmikantham, V. (1991). Theorem about the Existence and Uniqueness of a Solution of a Nonloca Abstract Cauchy Problem in a Banach Space. Applicable Analysis, 40(1), 11–19. https://doi.org/http://dx.doi.org/10.1080/00036819008839989

Byszewski, L. (1990). Existence and uniqueness of solutions of nonlocal problems for hiperbolic equation uxt=F(x,t,u,ux). Journal of Applied Mathematics and Stochastic Analysis, 3(3), 163–168. https://doi.org/10.1155/S1048953390000156

Byszewski, Ludwik. (1991). Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem. Journal of Mathematical Analysis and Applications, 162(2), 494–505. https://doi.org/10.1016/0022-247X(91)90164-U

Chabrowski, J. (1984). On non-local problems for parabolic equations. Nagoya Mathematical Journal, 93, 109–131. Recuperado de https://www.cambridge.org/core/services/aop-cambridge-core/content/view/CDF2E7DACF20061D6282318971E2AA54/S0027763000020705a.pdf/mordellweil_group_of_rank_8_and_a_subgroup_of_finite_index.pdf

Hale, J. K., & Kato, J. (1978). Phase space for retarded equations with infinite delay. Funkcialaj Ekvacioj, 21, 11–41. Recuperado de

http://fe.math.kobe-u.ac.jp/FE/FE_pdf_with_bookmark/FE21-30-en_KML/fe21-011-041/fe21-011-041.pdf

Hino, Y., Murakami, S., & Naito, T. (2013). Functional differential equations with infinite delay. In A. D. Heidelberg, B. E. Zurich, & F. T. Groningen (Eds.), Lecture Notes in Mathematics 1473 (Vol. 79). Berlin: Springer-Verlag. https://doi.org/10.1016/j.na.2012.11.018

Karakostas, G. L. (2003). An extension of Krasnoselskii’s fixed point theorem for contractions and compact mappings. Topological Methods in Nonlinear Analysis, 22(1), 181–191. https://doi.org/10.12775/tmna.2003.035

Lakshmikantham, V., Bainov, D. D., & Simeonov, P. S. (1989). Theory of Impulsive Differential Equations. Singapore: World Scientific. https://doi.org/10.1142/0906

Lee, E. B., & Markus, L. (1986). Foundations of Optimal Control Theory. Malaba, Florida: Robert E. Krieger Publishing Company.

Leiva, H., Cabada, D., & Gallo, R. (2020). Roughness of the Controllability for Time Varying Systems under the Influence of Impulses, Delay, and Nonlocal Conditions. Nonautonomous Dynamical Systems, 7(1), 126–139. https://doi.org/10.1515/msds-2020-0106

Leiva, H., & Sundar, P. (2017). Existence of Solutions for a Class of Semilinear Evolution Equations With Impulses and Delays. Journal of Nonlinear Evolution Equations and Applications, 2017(7), 95–108. Recuperado de

http://www.jneea.com/sites/jneea.com/files/JNEEA-vol.2017-no.7.pdf

Leiva, H., & Zambrano, H. (1999). Rank condition for the controllability of a linear time-varying system. International Journal of Control, 72(10), 929–931. https://doi.org/http://dx.doi.org/10.1080/002071799220669

Liu, J. H. (2000). Periodic solutions of infinite delay evolution equations. Journal of Mathematical Analysis and Applications, 247(2), 627–644. https://doi.org/10.1006/jmaa.2000.6896

Liu, J., Naito, T., & Van Minh, N. (2003). Bounded and periodic solutions of infinite delay evolution equations. Journal of Mathematical Analysis and Applications, 286(2), 705–712. https://doi.org/10.1016/S0022-247X(03)00512-2

Selvi, S., & Arjunan, M. M. (2012). Controllability results for impulsive differential systems with finite delay. Journal of Nonlinear Sciences and Applications, 05(03), 206–219. https://doi.org/http://dx.doi.org/10.22436/jnsa.005.03.05

Shin, J. S. (1987). Global convergence of successive approximations of solutions for functional differential equations with infinite delay. Tohoku Mathematical Journal, 39(4), 557–574. Recuperado de

https://projecteuclid.org/accountAjax/Download?downloadType=journal article&urlId=10.2748%2Ftmj%2F1178228243&isResultClick=True

Shin, J. S. (1987). On the uniqueness of solutions for functional differential equations with infinite delay. Funkcialaj Ekvacioj, 30, 225–236. Recuperado de http://fe.math.kobe-u.ac.jp/FE/FE_pdf_with_bookmark/FE21-30-en_KML/fe30-225-236/fe30-225-236.pdf

Vrabie, I. I. (2015). Delay evolution equations with mixed nonlocal plus local initial conditions. Communications in Contemporary Mathematics, 17(2), 1–22. https://doi.org/https://doi.org/10.1142/S0219199713500351

Downloads

Published

2022-01-31

Issue

Section

Research Articles and Reviews

How to Cite

Approximate controllability of non-instantaneous impulsive semilinear time-dependent control systems with unbounded delay and non-local condition . (2022). Novasinergia, ISSN 2631-2654, 5(1), 6-16. https://doi.org/10.37135/ns.01.09.01