Optimum selection of zinc-coated cable trunking systems for electrical installations based on atmospheric corrosion prediction
DOI:
https://doi.org/10.37135/unach.ns.001.02.01Palabras clave:
Atmospheric corrosion, coatings, trunking, design, projectResumen
The study presents a methodology for the optimum selection of the most suitable zinc-based coatings in metallic trunking systems to fulfill the requirements related to atmospheric corrosion resistance. The current methodologies are based on heuristic procedures that do not consider the influence of the in situ atmospheric conditions, which are the main cause of most of the corrosion problems. The effect of corrosion over time is generally estimated using a logarithmic function, which depends on corrosion during the first year of exposure, as well as on environmental parameters (e.g. temperature, humidity, pollutants, etc.). Different mathematical models for the prediction of corrosion during the first year of exposure were analyzed. Ten of these models were selected and compared with actual tests determining the model that best fitted the actual values. From this first-year corrosion value, the long-term corrosion function was calculated for each relevant commercial coating. Finally, a case study was analyzed by means of the proposed methodology. The results show the importance of the corrosion function and its influence in the selection of the coating to minimize costs.
Descargas
Referencias
- Benarie, M., & Lipfert, F. L. (1986). A general corrosion function in terms of atmospheric pollutant concentrations and rain pH. Atmospheric Environment (1967), 20(10), 1947–1958. http://doi.org/10.1016/0004-6981(86)90336-7
- CEN European Committee for Standardization (2005). EN 50085-1: Cable trunking systems and cable ducting systems for electrical installations - Part 1: General requirements (2005). Geneva (Switzerland): European Committee for Standardization. Retrieved from https://www.cenelec.eu/dyn/www/f?p=104:110:647128869848001::::FSP_ORG_ID,FSP_PROJECT,FSP_LANG_ID:1258293.43544.25
- CEN European Committee for Standardization (2008a). EN 61386-1: Conduit systems for cable management - Part 1: General requirements (2008). Geneva (Switzerland): European Committee for Standardization. Retrieved from https://www.cenelec.eu/dyn/www/f?p=104:110:647128869848001::::FSP_PROJECT,FSP_LANG_ID:45102.25
- CEN European Committee for Standardization (2008b). EN ISO 2081 - Metallic and other inorganic coatings — Electroplated coatings of zinc with supplementary treatments on iron or steel (ISO 2081:2008). Brussels (Belgium): European Committee for Standardization.
- CEN European Committee for Standardization (2009). EN ISO 1461 - Hot Dip Galvanized coatings on fabricated iron and steel articles - Specifications and tests methods (ISO 1461: 2009). Brussels (Belgium): European Committee for Standardization.
- CEN European Committee for Standardization (2012). EN ISO 9224 - Corrosion of metals and alloys -- Corrosivity of atmospheres -- Guiding values for the corrosivity categories (ISO 9224: 2012). Brussels (Belgium): European Committee for Standardization. Retrieved from http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=53500
- CEN European Committee for Standardization (2015). EN 10346: Continuously hot-dip coated steel flat products for cold forming - Technical delivery conditions. Brussels (Belgium): European Committee for Standardization (CEN).
- Chenoll Mora, E. (2005). Research Investigation Study - Advanced Estudies Diploma - Doctorate program. Valencia (Spain): Polytechnic University of Valencia.
- Chico, B., De La Fuente, D., Vega, J. M., & Morcillo, M. (2010). Mapas de España de corrosividad del zinc en atmósferas rurales. Revista de Metalurgia (CSIC), 46(6), 485–492. http://doi.org/10.3989/revmetalmadrid.1035
- Costa, J. M., Mercer, A. D., Institute of Materials of London, European Federation of corrosion, & Sociedad Española de Química Industrial. (1993). Progress in the understanding and prevention of corrosion. London (United Kingdom): Institute of Materials for the Sociedad Española de Quimíca Industrial on behalf of the European Federation of Corrosion. Retrieved from https://inis.iaea.org/search/search.aspx?orig_q=RN:25008679
- Dean, S., & Reiser, D. (2002). Analysis of Long-Term Atmospheric Corrosion Results from ISO CORRAG Program. In Outdoor Atmospheric Corrosion (pp. 3-3–16). 100 Barr Harbor Drive, PO Box C700. West Conshohocken, PA 19428-2959: ASTM International. http://doi.org/10.1520/STP10879S
- Feliu Batlle, S., Morcillo, M., & Feliu, S. (1993a). The prediction of atmospheric corrosion from meteorological and pollution parameters—I. Annual corrosion. Corrosion Science, 34(3), 403–414. http://doi.org/10.1016/0010-938X(93)90112-T
- Feliu Batlle, S., Morcillo, M., & Feliu, S. (1993b). The prediction of atmospheric corrosion from meteorological and pollution parameters—II. Long-term forecasts. Corrosion Science, 34(3), 415–422. http://doi.org/10.1016/0010-938X(93)90113-U
- Feliu, S., & Morcillo, M. (1980). Estudio corrosión en atmósferas rurales en España. Revista Iberoamericana de Corrosión y Protección, XI(2), 7.
- Feliu, S., & Morcillo, M. (2013). Corrosion in rural atmospheres in Spain. British Corrosion Journal, 22(2), 99–102. Retrieved from http://dx.doi.org/10.1179/000705987798271640
- González Fernández, J. A., & Consejo Superior de Investigaciones Científicas (CSIC). (1984). Teoría y práctica de la lucha contra la corrosión (1984th ed.). Madrid (Spain): Consejo Superior de Investigaciones científicas.
- Haagenrud, S. E., Henriksen, J. F., & Gram, F. (1985). Dose-response functions and corrosion mapping for a small geographical area. United States of America: International Atomic Energy Agency (IAEA). http://doi.org/17049900
- Hernández, L. ., Miranda, J. M., & Domínguez, O. (2002). Efecto protector de las capas de productos de corrosión de exposición atmosférica. Revista de Metalurgia (CSIC). Retrieved from http://revistademetalurgia.revistas.csic.es/index.php/revistademetalurgia/article/view/391/397
- IEC International Electrotechnical Commission, 2006. IEC 61537: Cable management – Cable tray systems and cable ladder systems (Ed. 2 - 2006). Geneva (Switzerland): International Electrotechnical Commission.
- IEC International Electrotechnical Commissio, 2016. IEC 61537: Cable Management - Cable tray systems and cable ladder systems (IEC_SC23A_MT12 – CLC_TC213_WG5 – CD(2)). Geneva (Switzerland): International Electrotechnical Commission (Committee Draft, pending of publication).
- ISO International Organization for Standardization, 2012. ISO 9223 - Corrosion of metals and alloys -- Corrosivity of atmospheres -- Classification, determination and estimation. Geneva (Switzerland): International Organization for Standardization (ISO). Retrieved from http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=53499
- ISO International Organization for Standardization, 2014. ISO 4998 - Continuous hot-dip zinc-coated and zinc-iron alloy-coated carbon steel sheet of structural quality. Geneva (Switzerland): International Organization for Standardization. Retrieved from https://www.iso.org/standard/63647.html
- Knotkova, D., Boschek, P., & Kreislova, K. (1995). Results of ISOCORRAG Program: Processing of One-year Data in Respect to Corrosivity Classification, STP1239. In Atmospheric Corrosion (p. 38). 100 Barr Harbor Drive, PO Box C700. West Conshohocken, PA 19428-2959: ASTM International. http://doi.org/10.1520/STP14912S
- Knotkova, D., Dean, S., & Kreislova, K. (2010). ISOCORRAG, International Atmospheric Exposure Program: summary of results (2010th ed.). ASTM International. Retrieved from http://www.svuom.cz/index.php?zobraz=isocorrag&lang=en
- Morcillo, M. (1998). Predicción a corto y largo plazo de la corrosión atmosférica de metales. Revista de Metalurgia (CSIC).
- Morcillo, M., & Feliu, S. (1987). Estudio corrosión en atmósferas rurales en España. Revista Iberoamericana de Corrosión y Protección, XVIII(2–6), 311.
- Morcillo, M., & Feliu, S. (1993). Mapas de España de corrosividad atmosférica. (M. Morcillo Linares & S. Feliu Matas, Eds.) (1993rd ed.). Madrid (Spain): CYTED (Programa Iberoamericano de ciencia y tecnología para el desarrollo.
- Panchenko, Y. M., & Marshakov, A. I. (2016). Long-term prediction of metal corrosion losses in atmosphere using a power-linear function. Corrosion Science, 109. 217–229. http://doi.org/10.1016/j.corsci.2016.04.002
- Panchenko, Y. M., Marshakov, A. I., Igonin, T. N., Kovtanyuk, V. V., & Nikolaeva, L. A. (2014). Long-term forecast of corrosion mass losses of technically important metals in various world regions using a power function. Corrosion Science, 88. 306–316. http://doi.org/10.1016/j.corsci.2014.07.049
- Pourbaix, M. (1982a). Atmospheric corrosion. (W. H. Ailor & J. W. and Sons, Eds.)Atmospheric corrosion. New York (USA).
- Pourbaix, M. (1982b). The linear bilogarithmic law for atmospheric corrosion. (W. H. Ailor, Ed.). New York (USA): J. Wiley & sons, New York.
- Schneider Electric. (2015). Price list. Spain: Schneider Electric. Retrieved from www.schneider-electric.com
- Weather and Climate: Average monthly Rainfall, Sunshine, Temperatures, Humidity, Wind Speed. (n.d.). Retrieved May 15. 2017. from https://weather-and-climate.com/
- World climate data - Temperature, Weather and rainfall. (n.d.). Retrieved May 15. 2017. from http://www.climatedata.eu/?gt=1&lang=en