Controllability of impulsive semilinear retarded differential equations with infinite delay and nonlocal conditions
DOI:
https://doi.org/10.37135/ns.01.10.01Keywords:
controllability, infinite delay, impulses., nonlocal conditions, Rothe’s fixed point theorem, semilinear retarded equationsAbstract
In this paper, we prove the exact controllability of semilinear retarded equations with infinity delay, impulses and nonlocal conditions; proving the conjecture that the controllability is preserve under the influence of delay, impulses and nonlocal conditions if some conditions are assumed on the nonlinear terms. As an application of our result, we present an example were all the conditions assumed are verified.
Downloads
References
Banas, J., & Goebel, K. (1980). Measures of Noncompactness in Banach Spaces. In Lecture Notes in Pure and Applied Mathematics (Vol. 60). New York USA: Marcel Dekker, Inc.
Carrasco, A., Leiva, H., Sanchez, J. L., & Tineo, A. (2014). Approximate Controllability of the Semilinear Impulsive Beam Equation with Impulses. Transaction on IoT and Cloud Computing, 2(3), 70–88.
Chukwu, E. N. (1979). Controllability of Delay Systems with Restrained Controls. Journal of Optimization Theory and Applications, 29(2), 301–320. Recuperado de https://link.springer.com/article/10.1007/BF00937172
Chukwu, E. N. (1980). On the Null-Controllability of Nonlinear Delay Systems with Restrained Controls. Journal of Mathematical Analysis and Applications, 76, 283–296. Recuperado de https://www.sciencedirect.com/science/article/pii/0022247X80900785/pdf?md5=c130e553ddc226dcf729e79f71d89a5a&pid=1-s2.0-0022247X80900785-main.pdf
Chukwu, E. N. (1987). Global Null Controllability of Nonlinear Delay Equations with Controls in a Compact Set. Journal of Optimization Theory and Applications, 53(1), 43–57. Recuperado de https://link.springer.com/article/10.1007/BF00938816
Chukwu, E. N. (1991). Nonlinear Delay Systems Controllability. Journal of Mathematical Analysis and Applications, 162(2), 564–576. https://doi.org/https://doi.org/10.1016/0022-247X(91)90169-Z
Chukwu, E. N. (1992). Stability and Time-Optimal Control of Hereditary Systems. In E. N. Chukwu (Ed.), Mathematics in Science and Engineering (Vol. 188). Elsevier. https://doi.org/https://doi.org/10.1016/S0076-5392(09)60165-X
Coron, J. M. (2007). Control and Nonlinearity. In Mathematical Surveys and Monographs (Vol. 136). Provience, RI: American Mathematical Society. Recuperado de https://bookstore.ams.org/surv-136-s/
Curtain, R. F., & Pritchard, A. J. (1978). Infinite Dimensional Linear Systems. In Lecture Notes in Control and Information Sciences (Vol. 8). Berlin Heidelberg: Springer Verlag. https://doi.org/https://doi.org/10.1007/BFb0006761
Curtain, R. F., & Zwart, H. J. (1995). An Introduction to Infinite Dimensional Linear Systems Theory. In Text in Applied Mathematics (Vol. 21). New York USA: Springer Verlag. https://doi.org/https://doi.org/10.1007/978-1-4612-4224-6
Dauer, J. P. (1976). Nonlinear Perturbation of Quasilinear Control Systems. Journal of Mathematical Analysis and Applications, 54(3), 717–725. Recuperado de https://www.sciencedirect.com/science/article/pii/0022247X76901918/pdf?md5=91086738c9fa51fc1d5571505866f4d2&pid=1-s2.0-0022247X76901918-main.pdf
Do, V. N. (1990). Controllability of Semilinear Systems. Journal of Optimization Theory and Applications, 65(1), 41–52. https://doi.org/https://doi.org/10.1007/BF00941158
Hale, J., & Kato, J. (1978). Phase space for retarded equations with infinite delay. Funkcialaj Ekvacioj, 21(1), 11–41. Recuperado de http://fe.math.kobe-u.ac.jp/FE/FE_pdf_with_bookmark/FE21-30-en_KML/fe21-011-041/fe21-011-041.pdf
Isac, G. (2004). On Rothe’s fixed point theorem in General Topological Vector Space. Analele Stiintifice Ale Universitatii Ovidius Constanta, 12(2), 127–134. Recuperado de https://www.anstuocmath.ro/mathematics/pdf8/127_134_GIsac.pdf
Lee, E. B., & Markus, L. (1967). Foundations of Optimal Control Theory. New York USA: Wiley. Recuperado de https://www.semanticscholar.org/paper/Foundations-of-optimal-control-theory-Lee-Markus/5a51f2611dca07aa2705565a297b483c9b6b25de
Leiva, H. (2014a). Controllability of Semilinear Impulsive Nonautonomous Systems. International Journal of Control, 88(3). https://doi.org/https://doi.org/10.1080/00207179.2014.
Leiva, H. (2014b). Rothe’s fixed point theorem and Controllability of Semilinear Nonautonomous Systems. System & Control Letters, 67, 14–18. https://doi.org/https://doi.org/10.1016/j.sysconle.2014.01.008
Leiva, H. (2015). Approximate Controllability of Semilinear Impulsive Evolution Equations. Abstract and Applied Analysis, 2015. https://doi.org/https://doi.org/10.1155/2015/797439
Leiva, H. (2018). Karakostas Fixed Point Theorem and the Existence of Solutions for Impulsive Semilinear Evolution Equations with Delays and Nonlocal Conditions. Communications in Mathematical Analysis, 21(2), 68–91. Recuperado de https://projecteuclid.org/journals/communications-in-mathematical-analysis/volume-21/issue-2/Karakostas-Fixed-Point-Theorem-and-the-Existence-of-Solutions-for/cma/1547262053.short
Leiva, H., & Merentes, N. (2015). Approximate Controllability of the Impulsive Semilinear Heat Equation. Journal of Mathematics and Applications, 38, 85–104. Recuperado de https://jma.prz.edu.pl/fcp/FGBUKOQtTKlQhbx08SlkTUQJQX2o8DAoHNiwFE1xVS3tBG1gnBVcoFW8SETZKHg/26/sdudek%40prz.edu.pl/jma-38/jma38_08_leiva.pdf
Leiva, H., & Zambrano, H. (1999). Rank condition for the controllability of a linear time-varying system. International Journal of Control, 72(10), 929–931. https://doi.org/https://doi.org/10.1080/002071799220669
Liu, J. H. (2000). Periodic solutions of infinite delay evolution equations. Journal of Mathematical Analysis and Applications, 247(2), 627–644. https://doi.org/https://doi.org/10.1006/jmaa.2000.6896
Liu, J., Naito, T., & Van Minh, N. (2003). Bounded and periodic solutions of infinite delay evolution equations. Journal of Mathematical Analysis and Applications, 286(2), 705–712. https://doi.org/https://doi.org/10.1016/S0022-247X(03)00512-2
Lukes, D. L. (1972). Global Controllability of Nonlinear Systems. SIAM Journal on Control and Optimization, 10(1), 112–126. https://doi.org/https://doi.org/10.1137/0310011
Mirza, K. B., & Womack, B. F. (1972). On the Controllability of Nonlinear Time-Delay Systems. IEEE Transactions on Automatic Control, 17(6), 812–814. https://doi.org/https://doi.org/10.1109/TAC.1972.1100155
Nieto, J. J., & Tisdell, C. C. (2010). On exact controllability of first-order impulsive differential equations. Advances in Difference Equations, (136504). https://doi.org/https://doi.org/10.1155/2010/136504
Selvi, S., & Mallika, M. (2012). Controllability results for Impulsive Differential Systems with finite Delay. Journal of Nonlinear Science and Applications, 5(3), 206–219. https://doi.org/http://dx.doi.org/10.22436/jnsa.005.03.05
Sinha, A. S. C. (1985). Null-Controllability of Non-Linear Infinite Delay Systems with Restrained Controls. International Journal of Control, 42(3), 735–741. https://doi.org/https://doi.org/10.1080/00207178508933394
Sinha, A. S. C., & Yokomoto, C. F. (1980). Null Controllability of a Nonlinear System with Variable Time Delay. IEEE Transactions on Automatic Control, 25(6), 1234–1236. https://doi.org/https://doi.org/10.1109/TAC.1980.1102522
Smart, J. D. R. (1980). Fixed Point Theorems. In Methods of Mathematical Economics (pp. 224–292). Berlin, Heidelberg: Springer. https://doi.org/https://doi.org/10.1007/978-3-662-25317-5_3
Sontag, E. D. (1998). Mathematical Control Theory: Deterministic Finite Dimensional Systems (2nd ed.). NY USA: Springer. https://doi.org/https://doi.org/10.1007/978-1-4612-0577-7
Vidyasager, M. (1972). A Controllability Condition for Nonlinear Systems. IEEE Transactions on Automatic Control, 17(4), 569–570. https://doi.org/https://doi.org/10.1109/TAC.1972.1100064
Zhu, Z.-Q., & Lin, Q.-W. (2012). Exact Controllability of Semilinear Systems with Impulses. Bulletin of Mathematical Analysis and Applications, 4(1), 157–167. https://doi.org/https://www.emis.de/journals/BMAA/repository/docs/BMAA4_1_15.pdf